试题
题目:
如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,这个一次函数的表达式是( )
A.y=2x+3
B.y=x-3
C.y=x+3
D.y=3-x
答案
D
解:∵B点在正比例函数y=2x的图象上,横坐标为1,
∴y=2×1=2,
∴B(1,2),
设一次函数解析式为:y=kx+b,
∵过点A的一次函数的图象过点A(0,3),与正比例函数y=2x的图象相交于点B(1,2),
∴可得出方程组
b=3
k+b=2
,
解得
b=3
k=-1
,
则这个一次函数的解析式为y=-x+3,
故选D.
考点梳理
考点
分析
点评
待定系数法求一次函数解析式;两条直线相交或平行问题.
根据正比例函数图象确定A点坐标再根据图象确定B点的坐标,设出一次函数解析式,代入一次函数解析式,即可求出.
此题主要考查了待定系数法求一次函数解析式,解决问题的关键是利用一次函数的特点,来列出方程组,求出未知数,即可写出解析式.
找相似题
(2011·枣庄)如图所示,函数y
1
=|x|和
y
2
=
1
3
x+
4
3
的图象相交于(-1,1),(2,2)两点.当y
1
>y
2
时,x的取值范围是( )
(2009·鄂州)如图,直线AB:y=
1
2
x+1分别与x轴、y轴交于点A,点B,直线CD:y=x+b分别与x轴,y轴交于点C,点D.直线AB与CD相交于点P,已知S
△ABD
=4,则点P的坐标是( )
(2006·自贡)无论实数m取什么值,直线y=x+
1
2
m与y=-x+5的交点都不能在( )
(2013·长清区二模)如果函数y=ax+b(a<0,b>0)和y=kx(k>0)的图象交于点P,那么点P应该位于( )
(2008·上虞市模拟)如图,一次函数图象与y轴交于点A,且与正比例函数y=-x的图象交于点B,则该一次函数图象与x轴的交点为( )