等边三角形的性质;全等三角形的判定;平行四边形的判定;翻折变换(折叠问题);解直角三角形.
(1)①在△ABC中,由已知可得∠ABC=60°,从而推得∠BAD=∠ABC=60°.由E为AB的中点,得到AE=BE.又因为∠AEF=∠BEC,所以△AEF≌△BEC.
②在Rt△ABC中,E为AB的中点,则CE=
AB,BE=
AB,得到∠BCE=∠EBC=60°.由△AEF≌△BEC,得∠AFE=∠BCE=60°.又∠D=60°,得∠AFE=∠D=60度.所以FC∥BD,又因为∠BAD=∠ABC=60°,所以AD∥BC,即FD∥BC,则四边形BCFD是平行四边形.
(2)在Rt△ABC中,设BC=a,则AB=2BC=2a,AD=AB=2a.设AH=x,则HC=HD=AD-AH=2a-x.在Rt△ABC中,由勾股定理得AC
2=3a
2.
在Rt△ACH中,由勾股定理得AH
2+AC
2=HC
2,即x
2+3a
2=(2a-x)
2.解得x=
a,即AH=
a.求得HC的值后,利用sin∠ACH=AH:HC求值.
本题考查了:
(1)折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;
(2)全等三角形的判定和性质,等腰直角三角形的性质,勾股定理,平行线的判定和性质,平行四边形的判定和性质,正弦的概念求解.
综合题;压轴题.