试题
题目:
(2013·杭州)在Rt△ABC中,∠C=90°,若AB=4,sinA=
3
5
,则斜边上的高等于( )
A.
64
25
B.
48
25
C.
16
5
D.
12
5
答案
B
解:根据题意画出图形,如图所示,
在Rt△ABC中,AB=4,sinA=
3
5
,
∴BC=ABsinA=2.4,
根据勾股定理得:AC=
A
B
2
-B
C
2
=3.2,
∵S
△ABC
=
1
2
AC·BC=
1
2
AB·CD,
∴CD=
AC·BC
AB
=
48
25
.
故选B
考点梳理
考点
分析
点评
专题
解直角三角形.
在直角三角形ABC中,由AB与sinA的值,求出BC的长,根据勾股定理求出AC的长,根据面积法求出CD的长,即为斜边上的高.
此题考查了解直角三角形,涉及的知识有:锐角三角函数定义,勾股定理,以及三角形的面积求法,熟练掌握定理及法则是解本题的关键.
计算题;压轴题.
找相似题
(2013·呼伦贝尔)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,将△ABC绕点C顺时针方向旋转60°后得到△EDC,此时点D在斜边AB上,斜边DE交AC于点F.则图中阴影部分的面积为( )
(2012·天门)如图,在Rt△ABC中,∠C=90°,∠A=30°,AC=6cm,CD⊥AB于D,以C为圆心,CD为半径画弧,交BC于E,则图中阴影部分的面积为( )
(2012·杭州)如图,在Rt△ABO中,斜边AB=1.若OC∥BA,∠AOC=36°,则( )
(2011·淄博)一副三角板按图1所示的位置摆放.将△DEF绕点A(F)逆时针旋转
60°后(图2),测得CG=10cm,则两个三角形重叠(阴影)部分的面积为( )
(2011·黔南州)在平面直角坐标系中,设点P到原点O的距离为p,OP与x轴正方向的夹角为a,则用[p,α]表示点P的极坐标,显然,点P的极坐标与它的坐标存在一一对应关系.例如:点P的坐标为(1,1),则其极坐标为[
2
,45°].若点Q的极坐标为[4,60°],则点Q的坐标为( )