试题
题目:
(2013·呼伦贝尔)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,将△ABC绕点C顺时针方向旋转60°后得到△EDC,此时点D在斜边AB上,斜边DE交AC于点F.则图中阴影部分的面积为( )
A.2
B.
2
3
C.
3
2
D.
3
答案
C
解:∵∠ACB=90°,∠A=30°,
∴∠B=90°-30°=60°,
∵△ABC绕点C顺时针方向旋转60°后得到△EDC,点D在斜边AB上,
∴∠BCD=60°,CD=BC=2,
∴∠ACD=∠ACB-∠BCD=90°-60°=30°,
∠CFD=180°-30°-60°=90°,
在Rt△CDF中,DF=
1
2
CD=
1
2
×2=1,
CF=
CD
2
-DF
2
=
2
2
-1
2
=
3
,
∴阴影部分的面积=
1
2
DF·CF=
1
2
×1×
3
=
3
2
.
故选C.
考点梳理
考点
分析
点评
旋转的性质;解直角三角形.
根据直角三角形两锐角互余求出∠B=60°,根据旋转变换只改变图形的位置不改变图形的形状与大小可得CD=BC,再求出∠ACD=30°,∠CFD=90°,解直角三角形求出DF、CF,然后利用三角形的面积公式列式计算即可得解.
本题考查了旋转的性质,直角三角形两锐角互余,熟记性质并求出△CDF是有一个角是30°的直角三角形是解题的关键.
找相似题
(2013·杭州)在Rt△ABC中,∠C=90°,若AB=4,sinA=
3
5
,则斜边上的高等于( )
(2012·天门)如图,在Rt△ABC中,∠C=90°,∠A=30°,AC=6cm,CD⊥AB于D,以C为圆心,CD为半径画弧,交BC于E,则图中阴影部分的面积为( )
(2012·杭州)如图,在Rt△ABO中,斜边AB=1.若OC∥BA,∠AOC=36°,则( )
(2011·淄博)一副三角板按图1所示的位置摆放.将△DEF绕点A(F)逆时针旋转
60°后(图2),测得CG=10cm,则两个三角形重叠(阴影)部分的面积为( )
(2011·黔南州)在平面直角坐标系中,设点P到原点O的距离为p,OP与x轴正方向的夹角为a,则用[p,α]表示点P的极坐标,显然,点P的极坐标与它的坐标存在一一对应关系.例如:点P的坐标为(1,1),则其极坐标为[
2
,45°].若点Q的极坐标为[4,60°],则点Q的坐标为( )