试题
题目:
(2012·和平区一模)如图所示,把一张长方形卡片ABCD放在每格宽度为12mm的横格纸中,恰好四个顶点都在横格线上,已知α=36°,求长方形卡片的周长.(精确到1mm)(参考数据:sin36°≈0.60,cos36°≈0.80,tan36°≈0.75)
答案
解:作BE⊥l于点E,DF⊥l于点F.
∵α+∠DAF=180°-∠BAD=180°-90°=90°,
∠ADF+∠DAF=90°,
∴∠ADF=α=36°.
根据题意,得BE=24mm,DF=48mm.
在Rt△ABE中,sin
α=
BE
AB
,
∴
AB=
BE
sin36°
=
24
0.60
=40
mm
在Rt△ADF中,cos
∠ADF=
DF
AD
,
∴
AD=
DF
cos36°
=
48
0.80
=60
mm.
∴矩形ABCD的周长=2(40+60)=200mm.
解:作BE⊥l于点E,DF⊥l于点F.
∵α+∠DAF=180°-∠BAD=180°-90°=90°,
∠ADF+∠DAF=90°,
∴∠ADF=α=36°.
根据题意,得BE=24mm,DF=48mm.
在Rt△ABE中,sin
α=
BE
AB
,
∴
AB=
BE
sin36°
=
24
0.60
=40
mm
在Rt△ADF中,cos
∠ADF=
DF
AD
,
∴
AD=
DF
cos36°
=
48
0.80
=60
mm.
∴矩形ABCD的周长=2(40+60)=200mm.
考点梳理
考点
分析
点评
专题
解直角三角形;正方形的性质;相似三角形的判定与性质.
作BE⊥l于点E,DF⊥l于点F,求∠ADF的度数,在Rt△ABE中,可以求得AB的值,在Rt△ADF中,可以求得AD的值,即可计算矩形ABCD的周长,即可解题.
本题考查了矩形对边相等的性质,直角三角形中三角函数的应用,锐角三角函数值的计算.
几何综合题.
找相似题
(2013·呼伦贝尔)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,将△ABC绕点C顺时针方向旋转60°后得到△EDC,此时点D在斜边AB上,斜边DE交AC于点F.则图中阴影部分的面积为( )
(2013·杭州)在Rt△ABC中,∠C=90°,若AB=4,sinA=
3
5
,则斜边上的高等于( )
(2012·天门)如图,在Rt△ABC中,∠C=90°,∠A=30°,AC=6cm,CD⊥AB于D,以C为圆心,CD为半径画弧,交BC于E,则图中阴影部分的面积为( )
(2012·杭州)如图,在Rt△ABO中,斜边AB=1.若OC∥BA,∠AOC=36°,则( )
(2011·淄博)一副三角板按图1所示的位置摆放.将△DEF绕点A(F)逆时针旋转
60°后(图2),测得CG=10cm,则两个三角形重叠(阴影)部分的面积为( )