试题

题目:
顺次连接对角线互相垂直的四边形各边中点所得的四边形一定是
矩形
矩形

答案
矩形

青果学院已知:AC⊥BD,E、F、G、H分别为各边的中点,连接点E、F、G、H.
求证:四边形EFGH是矩形
证明:∵E、F、G、H分别为各边的中点,
∴EF∥AC,GH∥AC,EH∥BD,FG∥BD,(三角形的中位线平行于第三边)
∴四边形EFGH是平行四边形,(两组对边分别平行的四边形是平行四边形)
∵AC⊥BD,EF∥AC,EH∥BD,
∴∠EMO=∠ENO=90°,
∴四边形EMON是矩形(有三个角是直角的四边形是矩形),
∴∠MEN=90°,
∴四边形EFGH是矩形(有一个角是直角的平行四边形是矩形).
考点梳理
矩形的判定;三角形中位线定理.
根据三角形中位线的性质,可得到这个四边形是平行四边形,再由对角线垂直,能证出有一个角等于90°,则这个四边形为矩形.
本题考查的是矩形的判定方法,常用的方法有三种:
①一个角是直角的平行四边形是矩形.
②三个角是直角的四边形是矩形.
③对角线相等的平行四边形是矩形.
找相似题