试题
题目:
如图,在菱形ABCD中,AC、BD相交于点O,E为AB的中点,若OE=3,则菱形ABCD的周长是
24
24
.
答案
24
解:在菱形ABCD中,AO=CO,
∵E为AB的中点,
∴OE是△ABC的中位线,
∴BC=2OE=2×3=6,
∴菱形ABCD的周长=4×6=24.
故答案为:24.
考点梳理
考点
分析
点评
菱形的性质;三角形中位线定理.
根据菱形的角平分线互相平分可得AO=CO,然后判断出OE是△ABC的中位线,根据三角形的中位线平行于第三边并且等于第三边的一半求出BC的长,再根据菱形的周长公式列式进行计算即可得解.
本题考查了菱形的对角线互相平分的性质,三角形的中位线平行于第三边并且等于第三边的一半的性质,以及菱形的周长公式,判断出OE是△ABC的中位线是解本题的关键.
找相似题
(2013·西宁)如果等边三角形的边长为4,那么等边三角形的中位线长为( )
(2013·梧州)如图,△ABC以点O为旋转中心,旋转180°后得到△A′B′C′.ED是△ABC的中位线,经旋转后为线段E′D′.已知BC=4,则E′D′=( )
(2013·铜仁地区)已知△ABC的各边长度分别为3cm,4cm,5cm,则连结各边中点的三角形的周长为( )
(2013·广州)如图所示,四边形ABCD是梯形,AD∥BC,CA是∠BCD的平分线,且AB⊥AC,AB=4,AD=6,则tanB=( )
(2012·烟台)如图是跷跷板示意图,横板AB绕中点O上下转动,立柱OC与地面垂直,设B点的最大高度为h
1
.若将横板AB换成横板A′B′,且A′B′=2AB,O仍为A′B′的中点,设B′点的最大高度为h
2
,则下列结论正确的是( )