试题
题目:
如图,梯形ABCD中,AD∥BC,点E在BC上,AE=BE,点F是CD的中点,且AF⊥AB,若AD=2.7,AF=4,AB=6,则CE的长为
2.3
2.3
.
答案
2.3
解:延长AF至BC延长线上交于G点,
∵AE=BE,
∴∠ABE=∠BAE,
∵AF⊥AB,
∴∠ABE+∠AGB=90°,∠BAE+∠EAG=90°,
∴∠AGB=∠EAG,
∴∠ABE=∠AGE,
∴AE=EG,
∴GE=BE,
∴E为BG中点,
∴EF是△ABG的中位线,
故可得:EF=
1
2
AB=3,FG=AF=4,
∴AG=8,
∴BG=10,
∴EG=5,
∵AF⊥AB,AE=BE,
∴点E是BG的中点,
∴EG=BE=5,
∴可得△EFG为直角三角形,
∴CE=EG-CG=EG-AD=5-2.7=2.3.
故答案为:2.3.
考点梳理
考点
分析
点评
专题
梯形;等腰三角形的性质;勾股定理;三角形中位线定理.
延长AF至BC延长线上交于G点,由已知可证明∠AGB=∠EAG,则EF为△ABG的中位线,得出EF=3,还可证明FG=4,由勾股定理得EG=5,则求得CE的长为2.3.
本题考查了三角形的中位线定理、等腰三角形的性质和勾股定理,是一道综合题,难度较大.
计算题.
找相似题
(2013·西宁)如果等边三角形的边长为4,那么等边三角形的中位线长为( )
(2013·梧州)如图,△ABC以点O为旋转中心,旋转180°后得到△A′B′C′.ED是△ABC的中位线,经旋转后为线段E′D′.已知BC=4,则E′D′=( )
(2013·铜仁地区)已知△ABC的各边长度分别为3cm,4cm,5cm,则连结各边中点的三角形的周长为( )
(2013·广州)如图所示,四边形ABCD是梯形,AD∥BC,CA是∠BCD的平分线,且AB⊥AC,AB=4,AD=6,则tanB=( )
(2012·烟台)如图是跷跷板示意图,横板AB绕中点O上下转动,立柱OC与地面垂直,设B点的最大高度为h
1
.若将横板AB换成横板A′B′,且A′B′=2AB,O仍为A′B′的中点,设B′点的最大高度为h
2
,则下列结论正确的是( )