试题
题目:
如图,△ABC中,AB=7,AC=10,AD是∠BAC的角平分线,点E是BC的中点,EF∥AD.则CF的长为
8.5
8.5
.
答案
8.5
解:如图,设点N是AC的中点,连接EN,则EN∥AB,EN=
1
2
AB,
∴∠CNE=∠BAC.
∵EF∥AD,
∴∠DAC=∠EFN.
∵AD是∠BAC的平分线,∠CNE=∠EFN+∠FEN,
∴∠EFN=∠FEN.
∴FN=EN=
1
2
AB,
∴FC=FN+NC=
1
2
AB+
1
2
AC=8.5.
故答案是:8.5.
考点梳理
考点
分析
点评
三角形中位线定理;等腰三角形的判定与性质.
设点N是AC的中点,连接EN,构造△ABC的中位线.根据三角形的中位线定理,得EN∥AB,EN=
1
2
AB;根据平行线的性质和等腰三角形的判定,得FN=EN,从而求解.
本题考查了三角形中位线定理,平行线的性质,等腰三角形的判定,角平分线的定义,难度适中.通过构造△ABC的中位线,结合平行线的性质和等腰三角形的判定得出FN=EN=
1
2
AB,是解题的关键.
找相似题
(2013·西宁)如果等边三角形的边长为4,那么等边三角形的中位线长为( )
(2013·梧州)如图,△ABC以点O为旋转中心,旋转180°后得到△A′B′C′.ED是△ABC的中位线,经旋转后为线段E′D′.已知BC=4,则E′D′=( )
(2013·铜仁地区)已知△ABC的各边长度分别为3cm,4cm,5cm,则连结各边中点的三角形的周长为( )
(2013·广州)如图所示,四边形ABCD是梯形,AD∥BC,CA是∠BCD的平分线,且AB⊥AC,AB=4,AD=6,则tanB=( )
(2012·烟台)如图是跷跷板示意图,横板AB绕中点O上下转动,立柱OC与地面垂直,设B点的最大高度为h
1
.若将横板AB换成横板A′B′,且A′B′=2AB,O仍为A′B′的中点,设B′点的最大高度为h
2
,则下列结论正确的是( )