试题
题目:
四边形ABCD中,AD>BC,E、F分别是AB、CD的中点,AD、BC的延长线分别与EF的延长线交于H、G,则∠AHE
<
<
∠BGE(填“>”或“=”或“<”号)
答案
<
证明:
连接BD,取中点I,连接IE,IF,
∵E,F分别是AB,CD的中点,
∴IE,IF分别是△ABD,△BDC的中位线,
∴IE平行等于
1
2
AD,IF平行等于
1
2
BC,
∵AD>BC,
∴IE>IF,
∵IE∥AD,
∴∠AHE=∠IEF,
同理∠BGE=∠IFE,
∵在△IEF中 IE>IF,
∴∠IFE>∠IEF,
∵∠AHE=∠IEF,∠BGE=∠IFE,
∴∠BGE>∠AHE.即∠AHE<∠BGE.
故答案为:<.
考点梳理
考点
分析
点评
专题
三角形中位线定理.
连接BD,取中点I,连接IE,IF,根据三角形中位线定理求证∠AHE=∠IEF,∠BGE=∠IFE,再利用已知条件求证∠IFE>∠IEF即可.
此题主要考查学生对三角形中位线定理这一知识点的理解和掌握,此题的关键是连接BD,取中点I,连接IE,IF,利用三角形中位线定理求证∠AHE=∠IEF,这是此题的突破点,此题有点难度,属于中档题.
证明题.
找相似题
(2013·西宁)如果等边三角形的边长为4,那么等边三角形的中位线长为( )
(2013·梧州)如图,△ABC以点O为旋转中心,旋转180°后得到△A′B′C′.ED是△ABC的中位线,经旋转后为线段E′D′.已知BC=4,则E′D′=( )
(2013·铜仁地区)已知△ABC的各边长度分别为3cm,4cm,5cm,则连结各边中点的三角形的周长为( )
(2013·广州)如图所示,四边形ABCD是梯形,AD∥BC,CA是∠BCD的平分线,且AB⊥AC,AB=4,AD=6,则tanB=( )
(2012·烟台)如图是跷跷板示意图,横板AB绕中点O上下转动,立柱OC与地面垂直,设B点的最大高度为h
1
.若将横板AB换成横板A′B′,且A′B′=2AB,O仍为A′B′的中点,设B′点的最大高度为h
2
,则下列结论正确的是( )