试题
题目:
(2012·孝感)我们把依次连接任意一个四边形各边中点得到的四边形叫做中点四边形.
如图,在四边形ABCD中,E、F、G、H分别是边AB、BC、CD、DA的中点,依次连接各边中点得到的中点四边形EFGH.
(1)这个中点四边形EFGH的形状是
平行四边形
平行四边形
;
(2)请证明你的结论.
答案
平行四边形
解:(1)平行四边形.
(2)证明:连接AC,
∵E是AB的中点,F是BC的中点,
∴EF∥AC,EF=
1
2
AC,
同理HG∥AC,HG=
1
2
AC,
综上可得:EF∥HG,EF=HG,
故四边形EFGH是平行四边形.
考点梳理
考点
分析
点评
专题
三角形中位线定理;平行四边形的判定.
(1)根据四边形的形状,及三角形中位线的性质可判断出四边形EFGH是平行四边形;
(2)连接AC、利用三角形的中位线定理可得出HG=EF、EF∥GH,继而可判断出四边形EFGH的形状;
此题考查了三角形的中位线定理及平行四边形的判定,本题还可证明EF=HG,EH=FG,然后得出四边形EFGH是平行四边形,难度一般.
新定义;探究型.
找相似题
(2013·西宁)如果等边三角形的边长为4,那么等边三角形的中位线长为( )
(2013·梧州)如图,△ABC以点O为旋转中心,旋转180°后得到△A′B′C′.ED是△ABC的中位线,经旋转后为线段E′D′.已知BC=4,则E′D′=( )
(2013·铜仁地区)已知△ABC的各边长度分别为3cm,4cm,5cm,则连结各边中点的三角形的周长为( )
(2013·广州)如图所示,四边形ABCD是梯形,AD∥BC,CA是∠BCD的平分线,且AB⊥AC,AB=4,AD=6,则tanB=( )
(2012·烟台)如图是跷跷板示意图,横板AB绕中点O上下转动,立柱OC与地面垂直,设B点的最大高度为h
1
.若将横板AB换成横板A′B′,且A′B′=2AB,O仍为A′B′的中点,设B′点的最大高度为h
2
,则下列结论正确的是( )