试题
题目:
(2013·建邺区一模)如图,已知点E,C在线段BF上,BE=EC=CF,AB∥DE,∠ACB=∠F.
(1)求证:△ABC≌△DEF;
(2)试判断:四边形AECD的形状,并证明你的结论.
答案
证明:(1)∵AB∥DE,
∴∠B=∠DEF,
∵BE=EC=CF,
∴BC=EF,
在△ABC和△DEF中
∠B=∠DEF
BC=EF
∠ACB=∠F
∴△ABC≌△DEF.
(2)四边形AECD的形状是平行四边形,
证明:∵△ABC≌△DEF,
∴AC=DF,
∵∠ACB=∠F,
∴AC∥DF,
∴四边形ACFD是平行四边形,
∴AD∥CF,AD=CF,
∵EC=CF,
∴AD∥EC,AD=CE,
∴四边形AECD是平行四边形.
证明:(1)∵AB∥DE,
∴∠B=∠DEF,
∵BE=EC=CF,
∴BC=EF,
在△ABC和△DEF中
∠B=∠DEF
BC=EF
∠ACB=∠F
∴△ABC≌△DEF.
(2)四边形AECD的形状是平行四边形,
证明:∵△ABC≌△DEF,
∴AC=DF,
∵∠ACB=∠F,
∴AC∥DF,
∴四边形ACFD是平行四边形,
∴AD∥CF,AD=CF,
∵EC=CF,
∴AD∥EC,AD=CE,
∴四边形AECD是平行四边形.
考点梳理
考点
分析
点评
平行四边形的判定;全等三角形的判定与性质;三角形中位线定理.
(1)根据平行线得出∠B=∠DEF,求出BC=EF,根据ASA推出两三角形全等即可;
(2)根据全等得出AC=DF,推出AC∥DF,得出平行四边形ACFD,推出AD∥CF,MAD=CF,推出AD=CE,AD∥CE,根据平行四边形的判定推出即可.
本题考查了平行线的性质和判定,平行四边形的性质和判定,全等三角形的判定和性质的应用,主要考查学生的推理能力.
找相似题
(2013·西宁)如果等边三角形的边长为4,那么等边三角形的中位线长为( )
(2013·梧州)如图,△ABC以点O为旋转中心,旋转180°后得到△A′B′C′.ED是△ABC的中位线,经旋转后为线段E′D′.已知BC=4,则E′D′=( )
(2013·铜仁地区)已知△ABC的各边长度分别为3cm,4cm,5cm,则连结各边中点的三角形的周长为( )
(2013·广州)如图所示,四边形ABCD是梯形,AD∥BC,CA是∠BCD的平分线,且AB⊥AC,AB=4,AD=6,则tanB=( )
(2012·烟台)如图是跷跷板示意图,横板AB绕中点O上下转动,立柱OC与地面垂直,设B点的最大高度为h
1
.若将横板AB换成横板A′B′,且A′B′=2AB,O仍为A′B′的中点,设B′点的最大高度为h
2
,则下列结论正确的是( )