试题
题目:
(2006·河南)如图,线段AB=4,点O是线段AB上的点,点C、D是线段OA、OB的中点,小明很轻松地求得CD=2.他在反思过程中突发奇想:若点O运动到线段AB的延长线上或直线AB外,原有的结论“CD=2”是仍然成立呢?请帮小明画出图形分析,并说明理由.
答案
解:原有的结论仍然成立.理由如下:
(1)当点O在AB的延长线上时,如图所示,
CD=OC-OD=
1
2
(OA-OB)=
1
2
AB=
1
2
×4=2.
(2)当点O在AB所在的直线外时,如图所示,
C,D分别是OA,OB的中点,由三角形中位线定理可得:
CD=
1
2
AB=
1
2
×4=2.
解:原有的结论仍然成立.理由如下:
(1)当点O在AB的延长线上时,如图所示,
CD=OC-OD=
1
2
(OA-OB)=
1
2
AB=
1
2
×4=2.
(2)当点O在AB所在的直线外时,如图所示,
C,D分别是OA,OB的中点,由三角形中位线定理可得:
CD=
1
2
AB=
1
2
×4=2.
考点梳理
考点
分析
点评
专题
三角形中位线定理;比较线段的长短.
运动到延长线时,应用根据线段中点定义得到有关的线段表示出所求的线段长;当在直线AB外时,O、A、B三点构成三角形,利用三角形的中位线即可求解.
解决本题需利用线段中点定义和三角形的中位线定理.熟练掌握运用以上知识是解题的关键.
动点型;探究型.
找相似题
(2013·西宁)如果等边三角形的边长为4,那么等边三角形的中位线长为( )
(2013·梧州)如图,△ABC以点O为旋转中心,旋转180°后得到△A′B′C′.ED是△ABC的中位线,经旋转后为线段E′D′.已知BC=4,则E′D′=( )
(2013·铜仁地区)已知△ABC的各边长度分别为3cm,4cm,5cm,则连结各边中点的三角形的周长为( )
(2013·广州)如图所示,四边形ABCD是梯形,AD∥BC,CA是∠BCD的平分线,且AB⊥AC,AB=4,AD=6,则tanB=( )
(2012·烟台)如图是跷跷板示意图,横板AB绕中点O上下转动,立柱OC与地面垂直,设B点的最大高度为h
1
.若将横板AB换成横板A′B′,且A′B′=2AB,O仍为A′B′的中点,设B′点的最大高度为h
2
,则下列结论正确的是( )