试题
题目:
(2010·滨州)如图,四边形ABCD,E、F、G、H分别是AB、BC、CD、DA的中点.
(1)请判断四边形EFGH的形状?并说明为什么;
(2)若使四边形EFGH为正方形,那么四边形ABCD的对角线应具有怎样的性质?
答案
解:(1)如图,四边形EFGH是平行四边形.
连接AC,BD,
∵E、F分别是AB、BC的中点,
∴EF∥AC,EF=
1
2
AC
同理HG∥AC,
HG=
1
2
AC
∴EF∥HG,EF=HG
∴EFGH是平行四边形;
(2)四边形ABCD的对角线垂直且相等.
∵四边形EFGH为正方形,
∴EH⊥EF,EH=EF,
∵E、H、F分别是AB、DA、BC的中点,
∴EH=
1
2
BD,EF=
1
2
AC,
∴BD=AC,
∵EH为三角形ABD的中位线,
∴EH∥BD,
∴∠HEF=∠ENM=90°,
∵EF为三角形ABC的中位线,
∴EF∥AC,
∴∠AMN=90°,
∴AC⊥BD,
∴ABCD的对角线应该互相垂直且相等.
解:(1)如图,四边形EFGH是平行四边形.
连接AC,BD,
∵E、F分别是AB、BC的中点,
∴EF∥AC,EF=
1
2
AC
同理HG∥AC,
HG=
1
2
AC
∴EF∥HG,EF=HG
∴EFGH是平行四边形;
(2)四边形ABCD的对角线垂直且相等.
∵四边形EFGH为正方形,
∴EH⊥EF,EH=EF,
∵E、H、F分别是AB、DA、BC的中点,
∴EH=
1
2
BD,EF=
1
2
AC,
∴BD=AC,
∵EH为三角形ABD的中位线,
∴EH∥BD,
∴∠HEF=∠ENM=90°,
∵EF为三角形ABC的中位线,
∴EF∥AC,
∴∠AMN=90°,
∴AC⊥BD,
∴ABCD的对角线应该互相垂直且相等.
考点梳理
考点
分析
点评
专题
平行四边形的判定;三角形中位线定理;正方形的性质.
(1)连接AC,利用中位线定理即可证明四边形EFGH是平行四边形;
(2)由于四边形EFGH为正方形,那么它的邻边互相垂直且相等,根据中位线定理可以推出四边形ABCD的对角线应该互相垂直且相等.
此题主要考查了三角形的中位线定理,及平行四边形的判定,正方形的性质等知识.
证明题.
找相似题
(2013·西宁)如果等边三角形的边长为4,那么等边三角形的中位线长为( )
(2013·梧州)如图,△ABC以点O为旋转中心,旋转180°后得到△A′B′C′.ED是△ABC的中位线,经旋转后为线段E′D′.已知BC=4,则E′D′=( )
(2013·铜仁地区)已知△ABC的各边长度分别为3cm,4cm,5cm,则连结各边中点的三角形的周长为( )
(2013·广州)如图所示,四边形ABCD是梯形,AD∥BC,CA是∠BCD的平分线,且AB⊥AC,AB=4,AD=6,则tanB=( )
(2012·烟台)如图是跷跷板示意图,横板AB绕中点O上下转动,立柱OC与地面垂直,设B点的最大高度为h
1
.若将横板AB换成横板A′B′,且A′B′=2AB,O仍为A′B′的中点,设B′点的最大高度为h
2
,则下列结论正确的是( )