试题
题目:
(2013·山西模拟)如图所示,在直角梯形ABCD中,AB∥CD,点E为AB的中点,点F为BC的中点,AB=4,EF=2,∠B=60°,则AD的长为
2
3
2
3
.
答案
2
3
解:过F作FM⊥EB,垂足为M,
∵AB=4,点E为AB的中点,
∴AE=EB=2,
∵EF=2,
∴EB=EF,
∵∠B=60°,
∴△FEB是等边三角形,
∴EM=MB=1,
∴MF=tan60°·MB=
3
,
∵ABCD是直角梯形,AB∥CD,点F为BC的中点,
∴AD=2FM=2×
3
=2
3
.
故答案为:2
3
.
考点梳理
考点
分析
点评
直角梯形;等边三角形的判定与性质;三角形中位线定理.
先过F作FM⊥EB,垂足为M,根据AB=4,EF=2,点E为AB的中点,得出AE=EB=EF,再根据∠B=60°,得出△FEB是等边三角形,EM=MB,在Rt△FMB中,根据正切求出MF的值,最后根据ABCD是直角梯形AB∥CD,点F为BC的中点,得出AD=2FM,即可求出答案.
此题考查了直角梯形,用到的知识点是等边三角形的判定与性质、三角形的中位线定理、特殊角的三角函数,解题的关键是做出辅助线,得出FM是AD的一半.
找相似题
(2013·西宁)如果等边三角形的边长为4,那么等边三角形的中位线长为( )
(2013·梧州)如图,△ABC以点O为旋转中心,旋转180°后得到△A′B′C′.ED是△ABC的中位线,经旋转后为线段E′D′.已知BC=4,则E′D′=( )
(2013·铜仁地区)已知△ABC的各边长度分别为3cm,4cm,5cm,则连结各边中点的三角形的周长为( )
(2013·广州)如图所示,四边形ABCD是梯形,AD∥BC,CA是∠BCD的平分线,且AB⊥AC,AB=4,AD=6,则tanB=( )
(2012·烟台)如图是跷跷板示意图,横板AB绕中点O上下转动,立柱OC与地面垂直,设B点的最大高度为h
1
.若将横板AB换成横板A′B′,且A′B′=2AB,O仍为A′B′的中点,设B′点的最大高度为h
2
,则下列结论正确的是( )