试题
题目:
(2002·常州)四边形的对角线互相垂直,顺次连接它的各边中点所得的四边形是
矩形
矩形
.
答案
矩形
解:顺次连接四边的各边中点所得的四边形是平行四边形,当四边形的对角线互相垂直时,平行四边形的邻边也互相垂直,所以是矩形.
故答案为:矩形.
考点梳理
考点
分析
点评
专题
矩形的判定;三角形中位线定理.
根据对角线互相平分且相等的四边形是矩形.
主要考查了三角形中位线定理中的数量关系:中位线等于所对应的边长的一半.解题的关键是根据中位线定理得出所求的四边形边的数量关系和位置关系,再根据对角线的数量关系和位置关系进行判断.
证明题.
找相似题
(2013·西宁)如果等边三角形的边长为4,那么等边三角形的中位线长为( )
(2013·梧州)如图,△ABC以点O为旋转中心,旋转180°后得到△A′B′C′.ED是△ABC的中位线,经旋转后为线段E′D′.已知BC=4,则E′D′=( )
(2013·铜仁地区)已知△ABC的各边长度分别为3cm,4cm,5cm,则连结各边中点的三角形的周长为( )
(2013·广州)如图所示,四边形ABCD是梯形,AD∥BC,CA是∠BCD的平分线,且AB⊥AC,AB=4,AD=6,则tanB=( )
(2012·烟台)如图是跷跷板示意图,横板AB绕中点O上下转动,立柱OC与地面垂直,设B点的最大高度为h
1
.若将横板AB换成横板A′B′,且A′B′=2AB,O仍为A′B′的中点,设B′点的最大高度为h
2
,则下列结论正确的是( )