题目:

(2004·新疆)如图,点D、E、F分别是△ABC的边AB、BC、AC的中点,连接DE、EF,要使四边形ADEF为正方形,还需增加条件:
△ABC为等腰直角三角形,且AB=AC,∠A=90°(此题答案不唯一).
△ABC为等腰直角三角形,且AB=AC,∠A=90°(此题答案不唯一).
.
答案
△ABC为等腰直角三角形,且AB=AC,∠A=90°(此题答案不唯一).
解:要证明四边形ADEF为正方形,
则要求其四边相等,AB=AC,点D、E、F分别是△ABC的边AB、BC、AC的中点,
则得其为平行四边形,
且有一角为直角,
则平行四边形的基础上得到正方形.
故答案为:△ABC为等腰直角三角形,且AB=AC,∠A=90°(此题答案不唯一).