试题
题目:
(2006·南通)已知四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点,当对角线AC、BD满足条件
AC=BD
AC=BD
时,四边形EFGH是菱形.
答案
AC=BD
解:如图,
AC=BD,E、F、G、H分别是线段AB、BC、CD、AD的中点,
则EH、FG分别是△ABD、△BCD的中位线,EF、HG分别是△ACD、△ABC的中位线,根据三角形的中位线的性质知,EH=FG=
1
2
BD,EF=HG=
1
2
AC,
∴当AC=BD,有EH=FG=HG=EF,则四边形EFGH是菱形.
故添加:AC=BD.
考点梳理
考点
分析
点评
菱形的判定;三角形中位线定理.
根据三角形的中位线定理和菱形的判定,可得顺次连接对角线相等的四边形各边中点所得四边形是菱形,故可添加:AC=BD.
本题是开放题,可以针对各种特殊的平行四边形的判定方法,给出条件,再证明结论.答案可以有多种,主要条件明确,说法有理即可.
找相似题
(2013·西宁)如果等边三角形的边长为4,那么等边三角形的中位线长为( )
(2013·梧州)如图,△ABC以点O为旋转中心,旋转180°后得到△A′B′C′.ED是△ABC的中位线,经旋转后为线段E′D′.已知BC=4,则E′D′=( )
(2013·铜仁地区)已知△ABC的各边长度分别为3cm,4cm,5cm,则连结各边中点的三角形的周长为( )
(2013·广州)如图所示,四边形ABCD是梯形,AD∥BC,CA是∠BCD的平分线,且AB⊥AC,AB=4,AD=6,则tanB=( )
(2012·烟台)如图是跷跷板示意图,横板AB绕中点O上下转动,立柱OC与地面垂直,设B点的最大高度为h
1
.若将横板AB换成横板A′B′,且A′B′=2AB,O仍为A′B′的中点,设B′点的最大高度为h
2
,则下列结论正确的是( )