试题
题目:
(2007·淄博)线段AB、CD在平面直角坐标系中的位置如图所示,O为坐标原点.若线段AB上一点P的坐标为(a,b),则直线OP与线段CD的交点的坐标为
(2a,2b)
(2a,2b)
.
答案
(2a,2b)
解:∵AB∥CD,且O,B,D三点在一条直线上,OB=BD
∴OP=PE
∴若点P的坐标为(a,b),
∴点E的坐标是(2a,2b).
故答案为(2a,2b).
考点梳理
考点
分析
点评
专题
三角形中位线定理;坐标与图形性质.
根据坐标图,可知B点坐标是(4,3),D点坐标是(8,6),A点坐标是(3,1),C点坐标是(6,2),那么连接BD,直线BD一定过原点O,连接AC直线AC一定过原点O,且B是OD的中点,同理A是OC的中点,于是AB是△OCD的中位线,从AB上任取一点P(a、b),则直线OP与CD的交点P′的坐标是(2a,2b).
正确的读图是解决本题的前提条件,由AB∥CD联想到三角形相似,或平行线分线段成比例定理,是解决这道题的关键.
压轴题.
找相似题
(2013·西宁)如果等边三角形的边长为4,那么等边三角形的中位线长为( )
(2013·梧州)如图,△ABC以点O为旋转中心,旋转180°后得到△A′B′C′.ED是△ABC的中位线,经旋转后为线段E′D′.已知BC=4,则E′D′=( )
(2013·铜仁地区)已知△ABC的各边长度分别为3cm,4cm,5cm,则连结各边中点的三角形的周长为( )
(2013·广州)如图所示,四边形ABCD是梯形,AD∥BC,CA是∠BCD的平分线,且AB⊥AC,AB=4,AD=6,则tanB=( )
(2012·烟台)如图是跷跷板示意图,横板AB绕中点O上下转动,立柱OC与地面垂直,设B点的最大高度为h
1
.若将横板AB换成横板A′B′,且A′B′=2AB,O仍为A′B′的中点,设B′点的最大高度为h
2
,则下列结论正确的是( )