答案
(1)证明:延长DN交AC于F,连BF,

∵N为CE中点,
∴EN=CN,
∵△ACB和△AED是等腰直角三角形,∠AED=∠ACB=90°,DE=AE,AC=BC,
∴∠EAD=∠EDA=∠BAC=45°,
∴DE∥AC,
∴△EDN∽△CFN,
∴
=
=
,
∵EN=NC,
∴DN=FN,FC=ED,
∴MN是△BDF的中位线,
∴MN∥BF,
∵AE=DE,DE=CF,
∴AE=CF,
∵∠EAD=∠BAC=45°,
∴∠EAC=∠ACB=90°,
在△CAE和△BCF中,
,
∴△CAE≌△BCF(SAS),
∴∠ACE=∠CBF,
∵∠ACE+∠BCE=90°,
∴∠CBF+∠BCE=90°,
即BF⊥CE,
∵MN∥BF,
∴MN⊥CE.
(2)证明:延长DN到G,使DN=GN,连接CG,延长DE、CA交于点K,
∵M为BD中点,
∴MN是△BDG的中位线,

∴BG=2MN,
在△EDN和·CGN中,
,
∴△EDN≌△CGN(SAS),
∴DE=CG=AE,∠GCN=∠DEN,
∴DE∥CG,
∴∠KCG=∠CKE,
∵∠CAE=45°+30°+45°=120°,
∴∠EAK=60°,
∴∠CKE=∠KCG=30°,
∴∠BCG=120°,
在△CAE和△BCG中,
,
∴△CAE≌△BCG(SAS),
∴BG=CE,
∵BG=2MN,
∴CE=2MN.
(1)证明:延长DN交AC于F,连BF,

∵N为CE中点,
∴EN=CN,
∵△ACB和△AED是等腰直角三角形,∠AED=∠ACB=90°,DE=AE,AC=BC,
∴∠EAD=∠EDA=∠BAC=45°,
∴DE∥AC,
∴△EDN∽△CFN,
∴
=
=
,
∵EN=NC,
∴DN=FN,FC=ED,
∴MN是△BDF的中位线,
∴MN∥BF,
∵AE=DE,DE=CF,
∴AE=CF,
∵∠EAD=∠BAC=45°,
∴∠EAC=∠ACB=90°,
在△CAE和△BCF中,
,
∴△CAE≌△BCF(SAS),
∴∠ACE=∠CBF,
∵∠ACE+∠BCE=90°,
∴∠CBF+∠BCE=90°,
即BF⊥CE,
∵MN∥BF,
∴MN⊥CE.
(2)证明:延长DN到G,使DN=GN,连接CG,延长DE、CA交于点K,
∵M为BD中点,
∴MN是△BDG的中位线,

∴BG=2MN,
在△EDN和·CGN中,
,
∴△EDN≌△CGN(SAS),
∴DE=CG=AE,∠GCN=∠DEN,
∴DE∥CG,
∴∠KCG=∠CKE,
∵∠CAE=45°+30°+45°=120°,
∴∠EAK=60°,
∴∠CKE=∠KCG=30°,
∴∠BCG=120°,
在△CAE和△BCG中,
,
∴△CAE≌△BCG(SAS),
∴BG=CE,
∵BG=2MN,
∴CE=2MN.