试题
题目:
如图,已知△ABC中,D是BC的中点,DE∥AB交AC于E,BF平分∠ABC,交DE于点F.
(1)若BC=2,求DF的长;
(2)连接FC,求∠BFC的度数.
答案
解:(1)∵DE∥AB,
∴∠DFB=∠ABF.
∵BF平分∠ABC,
∴∠ABF=∠DBF.
∴∠DFB=∠DBF.
∴DF=DB.
∵BC=2,D是BC的中点,
∴BD=1.
∴DF=1;
(2)∵DB=DF=DC=1,
∴∠DFC=∠DCF.
在△BCF中,
∠CBF+∠BFD+∠DFC+∠FCB=180°,
∴∠BFD+∠DFC=180°÷2=90°,
即∠BFC=90°.
解:(1)∵DE∥AB,
∴∠DFB=∠ABF.
∵BF平分∠ABC,
∴∠ABF=∠DBF.
∴∠DFB=∠DBF.
∴DF=DB.
∵BC=2,D是BC的中点,
∴BD=1.
∴DF=1;
(2)∵DB=DF=DC=1,
∴∠DFC=∠DCF.
在△BCF中,
∠CBF+∠BFD+∠DFC+∠FCB=180°,
∴∠BFD+∠DFC=180°÷2=90°,
即∠BFC=90°.
考点梳理
考点
分析
点评
等腰三角形的判定与性质;角平分线的定义;平行线的性质;三角形中位线定理.
(1)根据已知条件证明∠DBF=∠DFB得DF=DB;
(2)DB=DF=DC.根据等腰三角形性质和三角形内角和定理求解.
此题考查等腰三角形的判定和性质及三角形内角和定理,难度不大.
找相似题
(2013·西宁)如果等边三角形的边长为4,那么等边三角形的中位线长为( )
(2013·梧州)如图,△ABC以点O为旋转中心,旋转180°后得到△A′B′C′.ED是△ABC的中位线,经旋转后为线段E′D′.已知BC=4,则E′D′=( )
(2013·铜仁地区)已知△ABC的各边长度分别为3cm,4cm,5cm,则连结各边中点的三角形的周长为( )
(2013·广州)如图所示,四边形ABCD是梯形,AD∥BC,CA是∠BCD的平分线,且AB⊥AC,AB=4,AD=6,则tanB=( )
(2012·烟台)如图是跷跷板示意图,横板AB绕中点O上下转动,立柱OC与地面垂直,设B点的最大高度为h
1
.若将横板AB换成横板A′B′,且A′B′=2AB,O仍为A′B′的中点,设B′点的最大高度为h
2
,则下列结论正确的是( )