试题
题目:
如图1,四边形ABCD为正方形,E在CD上,∠DAE的平分线交CD于F,BG⊥AF于G,交AE于H.
(1)如图1,∠DEA=60°,求证:AH=DF;
(2)如图2,E是线段CD上(不与C、D重合)任一点,请问:AH与DF有何数量关系并证明你的结论;
(3)如图3,E是线段DC延长线上一点,若F是△ADE中与∠DAE相邻的外角平分线与CD的交点,其它条件不变,请判断AH与DF的数量关系(画图,直接写出结论,不需证明).
答案
证明:(1)延长BG交AD于点S
∵AF是HAS的角的平分线,BS⊥AF
∴∠HAG=∠SAG,∠HGA=∠SGA=90°
又∵AG=AG
∴△AGH≌△AGS
∴AH=AS,
∵AB∥CD
∴∠AFD=∠BAG,
∵∠BAG+∠ABS=∠ABS+∠ASB=90°
∴∠BAG=∠ASB
∴∠ASB=∠AFD
又∵∠BAS=∠D=90°,AB=AD
∴△ABS≌△DAF
∴DF=AS
∴DF=AH.
(2)DF=AH.
同理可证DF=AH.
(3)DF=AH.
证明:(1)延长BG交AD于点S
∵AF是HAS的角的平分线,BS⊥AF
∴∠HAG=∠SAG,∠HGA=∠SGA=90°
又∵AG=AG
∴△AGH≌△AGS
∴AH=AS,
∵AB∥CD
∴∠AFD=∠BAG,
∵∠BAG+∠ABS=∠ABS+∠ASB=90°
∴∠BAG=∠ASB
∴∠ASB=∠AFD
又∵∠BAS=∠D=90°,AB=AD
∴△ABS≌△DAF
∴DF=AS
∴DF=AH.
(2)DF=AH.
同理可证DF=AH.
(3)DF=AH.
考点梳理
考点
分析
点评
专题
正方形的性质;全等三角形的判定与性质;角平分线的性质;三角形中位线定理.
(1)延长BG交AD于点S,由于AF是HAS的角的平分线,BS⊥AF故有∠HAG=∠SAG,∠HGA=∠SGA=90°,由AAS证得△AGH≌△AGS,可得AH=AS,再证得△ABS≌△DAF,即可得到DF=AS=AH.
(2)(3)证法相同.
本题利用了正方形的性质,全等三角形的判定和性质,同角的余角相等求解.注意三个小题的证明方法一样.即不论点E在CD上还是DC的延长线上结果都一样.
几何综合题.
找相似题
(2013·西宁)如果等边三角形的边长为4,那么等边三角形的中位线长为( )
(2013·梧州)如图,△ABC以点O为旋转中心,旋转180°后得到△A′B′C′.ED是△ABC的中位线,经旋转后为线段E′D′.已知BC=4,则E′D′=( )
(2013·铜仁地区)已知△ABC的各边长度分别为3cm,4cm,5cm,则连结各边中点的三角形的周长为( )
(2013·广州)如图所示,四边形ABCD是梯形,AD∥BC,CA是∠BCD的平分线,且AB⊥AC,AB=4,AD=6,则tanB=( )
(2012·烟台)如图是跷跷板示意图,横板AB绕中点O上下转动,立柱OC与地面垂直,设B点的最大高度为h
1
.若将横板AB换成横板A′B′,且A′B′=2AB,O仍为A′B′的中点,设B′点的最大高度为h
2
,则下列结论正确的是( )