试题

题目:
如图(1),BD、CE分别是△ABC的外角平分线,过点A作AF⊥BD,AG⊥CE,垂足分别为F、G,连接FG,延长AF、AG,与直线BC相交于M、N.
(1)试说明:FG=
1
2
(AB+BC+AC);
(2)①如图(2),BD、CE分别是△ABC的内角平分线;②如图(3),BD为△ABC的内角平分线,CE为△ABC的外角平分线.
则在图(2)、图(3)两种情况下,线段FG与△ABC三边又有怎样的数量关系?请写出你的猜想,并对其中的一种情况说明理由.
青果学院
答案
解:(1)证明:∵AF⊥BD,∠ABF=∠MBF,
∴∠BAF=∠BMF,
∴MB=AB,
∴AF=MF,
 同理可说明:CN=AC,AG=NG 
∴FG是△AMN的中位线,
∴FG=
1
2
MN=
1
2
(MB+BC+CN)=
1
2
(AB+BC+AC)  

(2)解:图(2)中,FG=
1
2
(AB+AC-BC)    
图(3)中,FG=
1
2
(AC+BC-AB)     
①如图(2),延长AF、AG,与直线BC相交于M、N,
由(1)中可知,MB=AB,AF=MF,CN=AC,AG=NG,
∴FG=
1
2
MN=
1
2
(BM+CN-BC)=
1
2
(AB+AC-BC),
②如图(3)延长AF、AG,与直线BC相交于M、N,同样由(1)中可知,MB=AB,AF=MF,CN=AC,AG=NG,
∴FG=
1
2
MN=
1
2
(CN+BC-BM)=
1
2
(AC+BC-AB),解答正确一种即可     
青果学院
解:(1)证明:∵AF⊥BD,∠ABF=∠MBF,
∴∠BAF=∠BMF,
∴MB=AB,
∴AF=MF,
 同理可说明:CN=AC,AG=NG 
∴FG是△AMN的中位线,
∴FG=
1
2
MN=
1
2
(MB+BC+CN)=
1
2
(AB+BC+AC)  

(2)解:图(2)中,FG=
1
2
(AB+AC-BC)    
图(3)中,FG=
1
2
(AC+BC-AB)     
①如图(2),延长AF、AG,与直线BC相交于M、N,
由(1)中可知,MB=AB,AF=MF,CN=AC,AG=NG,
∴FG=
1
2
MN=
1
2
(BM+CN-BC)=
1
2
(AB+AC-BC),
②如图(3)延长AF、AG,与直线BC相交于M、N,同样由(1)中可知,MB=AB,AF=MF,CN=AC,AG=NG,
∴FG=
1
2
MN=
1
2
(CN+BC-BM)=
1
2
(AC+BC-AB),解答正确一种即可     
青果学院
考点梳理
三角形中位线定理;角平分线的定义;线段垂直平分线的性质.
(1)由AF⊥BD,∠ABF=∠MBF,得到∠BAF=∠BMF,进一步推出MB=AB,AF=MF,同理CN=AC,AG=NG,即可得出答案;
(2)延长AF、AG,与直线BC相交于M、N,与(1)类似可以证出答案;
(3)与(1)方法类同即可证出答案.
本题主要考查了三角形的中位线定理,三角形的内角和定理,等腰三角形的性质和判定等知识点,解此题的关键是作辅助线转化成三角形的中位线.
综合题.
找相似题