试题
题目:
(2012·珠海)如图,矩形OABC的顶点A、C分别在x轴、y轴正半轴上,B点坐标为(3,2),OB与AC交于点P,D、E、F、G分别是线段OP、AP、BP、CP的中点,则四边形DEFG的周长为
5
5
.
答案
5
解:∵四边形OABC是矩形,
∴OA=BC,AB=OC; BA⊥OA,BC⊥OC.
∵B点坐标为(3,2),
∴OA=3,AB=2.
∵D、E、F、G分别是线段OP、AP、BP、CP的中点,
∴DE=GF=1.5; EF=DG=1.
∴四边形DEFG的周长为 (1.5+1)×2=5.
故答案为 5.
考点梳理
考点
分析
点评
三角形中位线定理;坐标与图形性质;矩形的性质.
根据题意,由B点坐标知OA=BC=3,AB=OC=2;根据三角形中位线定理可求四边形DEFG的各边长度,从而求周长.
此题主要考查矩形的性质和三角形中位线定理,理清坐标系内点的坐标与对应相等的长度之间的关系很关键.难度不大.
找相似题
(2013·西宁)如果等边三角形的边长为4,那么等边三角形的中位线长为( )
(2013·梧州)如图,△ABC以点O为旋转中心,旋转180°后得到△A′B′C′.ED是△ABC的中位线,经旋转后为线段E′D′.已知BC=4,则E′D′=( )
(2013·铜仁地区)已知△ABC的各边长度分别为3cm,4cm,5cm,则连结各边中点的三角形的周长为( )
(2013·广州)如图所示,四边形ABCD是梯形,AD∥BC,CA是∠BCD的平分线,且AB⊥AC,AB=4,AD=6,则tanB=( )
(2012·烟台)如图是跷跷板示意图,横板AB绕中点O上下转动,立柱OC与地面垂直,设B点的最大高度为h
1
.若将横板AB换成横板A′B′,且A′B′=2AB,O仍为A′B′的中点,设B′点的最大高度为h
2
,则下列结论正确的是( )