试题
题目:
如图,△ABC中,D是AB的中点,E在AC上,且∠AED=90°+
1
2
∠C,则BC+2AE等于( )
A.AB
B.AC
C.
3
2
AB
D.
3
2
AC
答案
B
解:如图,过点B作BF∥DE交AC于点F.则∠BFC=∠DEF.
又∵点D是AB的中点,
∴EF=AE.
∵∠DEF=∠BFC=180°-∠AED=180°-(90°+
1
2
∠C)=90°-
1
2
∠C,
∴∠FBC=∠BFC,
∴BC=FC,
∴BC+2AE=AC.
故选B.
考点梳理
考点
分析
点评
三角形中位线定理;等腰三角形的判定与性质.
如图,过点B作BF∥DE交AC于点F.则∠BFC=∠DEF.由三角形中位线的性质得到EF=AE.则由平行线的性质和邻补角的定义得到∠DEF=∠BFC=90°-
1
2
∠C,即
∠FBC=∠BFC,等角对等边得到BC=FC,故BC+2AE=AC.
本题考查了三角形中位线定理和等腰三角形的判定与性质.三角形的中位线平行于第三边且等于第三边的一半.
找相似题
(2013·西宁)如果等边三角形的边长为4,那么等边三角形的中位线长为( )
(2013·梧州)如图,△ABC以点O为旋转中心,旋转180°后得到△A′B′C′.ED是△ABC的中位线,经旋转后为线段E′D′.已知BC=4,则E′D′=( )
(2013·铜仁地区)已知△ABC的各边长度分别为3cm,4cm,5cm,则连结各边中点的三角形的周长为( )
(2013·广州)如图所示,四边形ABCD是梯形,AD∥BC,CA是∠BCD的平分线,且AB⊥AC,AB=4,AD=6,则tanB=( )
(2012·烟台)如图是跷跷板示意图,横板AB绕中点O上下转动,立柱OC与地面垂直,设B点的最大高度为h
1
.若将横板AB换成横板A′B′,且A′B′=2AB,O仍为A′B′的中点,设B′点的最大高度为h
2
,则下列结论正确的是( )