试题
题目:
如图,平行四边形ABCD中,CF⊥BD,且CF=BD,连接AF,E为AF中点,连接EB、ED,判断△EBD的形状,并证明你的结论.
答案
答:△EBD的形状是等腰三角形,
理由如下:连AC交BD于O,连OE,∵四边形ABCD是平行四边形,
∴AO=CO,
∴OE为△ACF的中位线,
∴OE∥CF
,
∵CF⊥BD,
∴OE⊥BD,
∵BO=DO,
∴OE垂直平分BD,
∴BE=DE,
∴△EBD为等腰三角形.
答:△EBD的形状是等腰三角形,
理由如下:连AC交BD于O,连OE,∵四边形ABCD是平行四边形,
∴AO=CO,
∴OE为△ACF的中位线,
∴OE∥CF
,
∵CF⊥BD,
∴OE⊥BD,
∵BO=DO,
∴OE垂直平分BD,
∴BE=DE,
∴△EBD为等腰三角形.
考点梳理
考点
分析
点评
平行四边形的性质;三角形中位线定理.
连AC交BD于O,连OE,根据平行四边形的性质以及三角形中位线定理证明即可.
本题考查了平行四边形的性质以及三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.
找相似题
(2013·西宁)如果等边三角形的边长为4,那么等边三角形的中位线长为( )
(2013·梧州)如图,△ABC以点O为旋转中心,旋转180°后得到△A′B′C′.ED是△ABC的中位线,经旋转后为线段E′D′.已知BC=4,则E′D′=( )
(2013·铜仁地区)已知△ABC的各边长度分别为3cm,4cm,5cm,则连结各边中点的三角形的周长为( )
(2013·广州)如图所示,四边形ABCD是梯形,AD∥BC,CA是∠BCD的平分线,且AB⊥AC,AB=4,AD=6,则tanB=( )
(2012·烟台)如图是跷跷板示意图,横板AB绕中点O上下转动,立柱OC与地面垂直,设B点的最大高度为h
1
.若将横板AB换成横板A′B′,且A′B′=2AB,O仍为A′B′的中点,设B′点的最大高度为h
2
,则下列结论正确的是( )