试题
题目:
如图所示,已知梯形ABCD中,AD∥BC,且AD<BC,N、M分别为AC、BD的中点,
求证:(1)MN∥BC;(2)MN=
1
2
(BC-AD).
答案
证明:
(1)取AB中点P,连MP,NP,
∵M为BD的中点,
∴PM∥AD,
同理NP∥BC,
∵AD∥BC,
∴N、M、P三点共线,
∴MN∥BC.
(2)法一:∵MN∥BC,N、M分别为AC、BD的中点,
∴P是AB的中点,
∴PN=
1
2
BC,PM=
1
2
AD,
∴MN=
1
2
(BC-AD).
法二:如图所示,连接AM并延长,交BC于点G.
∵AD∥BC,
∴∠ADM=∠GBM,∠MAD=∠MGB,
又∵M为BD中点,
∴△AMD≌△GMB.
∴BG=AD,AM=MG.
在△AGC中,MN为中位线,
∴MN=
1
2
GC=
1
2
(BC-BG)=
1
2
(BC-AD),
即MN=
1
2
(BC-AD).
证明:
(1)取AB中点P,连MP,NP,
∵M为BD的中点,
∴PM∥AD,
同理NP∥BC,
∵AD∥BC,
∴N、M、P三点共线,
∴MN∥BC.
(2)法一:∵MN∥BC,N、M分别为AC、BD的中点,
∴P是AB的中点,
∴PN=
1
2
BC,PM=
1
2
AD,
∴MN=
1
2
(BC-AD).
法二:如图所示,连接AM并延长,交BC于点G.
∵AD∥BC,
∴∠ADM=∠GBM,∠MAD=∠MGB,
又∵M为BD中点,
∴△AMD≌△GMB.
∴BG=AD,AM=MG.
在△AGC中,MN为中位线,
∴MN=
1
2
GC=
1
2
(BC-BG)=
1
2
(BC-AD),
即MN=
1
2
(BC-AD).
考点梳理
考点
分析
点评
专题
梯形;三角形中位线定理.
(1)取AB中点P,连MP,NP,证N、M、P三点共线即可;
(2)连接AM并延长,交BC于点G,证明△AMD≌△GMB,根据中位线定理即可证明;
本题考查了梯形及三角形中位线定理,难度较大,关键是通过巧妙地作辅助线进行证明.
证明题.
找相似题
(2013·西宁)如果等边三角形的边长为4,那么等边三角形的中位线长为( )
(2013·梧州)如图,△ABC以点O为旋转中心,旋转180°后得到△A′B′C′.ED是△ABC的中位线,经旋转后为线段E′D′.已知BC=4,则E′D′=( )
(2013·铜仁地区)已知△ABC的各边长度分别为3cm,4cm,5cm,则连结各边中点的三角形的周长为( )
(2013·广州)如图所示,四边形ABCD是梯形,AD∥BC,CA是∠BCD的平分线,且AB⊥AC,AB=4,AD=6,则tanB=( )
(2012·烟台)如图是跷跷板示意图,横板AB绕中点O上下转动,立柱OC与地面垂直,设B点的最大高度为h
1
.若将横板AB换成横板A′B′,且A′B′=2AB,O仍为A′B′的中点,设B′点的最大高度为h
2
,则下列结论正确的是( )