试题
题目:
如图,在·ABCD中,E,F分别是AD、BC上的点,且DE=CF,BE和AF的交点为M,CE和DF的交点为N,求证:MN∥AD,MN=
1
2
AD.
答案
证明:连接EF,
∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC.
∵DE=CF,
∴AE=BF.
∴四边形ABFE和四边形CDEF都是平行四边形.
∴BM=ME,CN=NE.
∴MN是△BCE的中位线.
∴MN∥AD,MN=
1
2
AD.
证明:连接EF,
∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC.
∵DE=CF,
∴AE=BF.
∴四边形ABFE和四边形CDEF都是平行四边形.
∴BM=ME,CN=NE.
∴MN是△BCE的中位线.
∴MN∥AD,MN=
1
2
AD.
考点梳理
考点
分析
点评
专题
三角形中位线定理;平行四边形的性质;平行四边形的判定.
连接EF构造出平行四边形,再根据平行四边形及三角形中位线定理即可解答.
此题的难度较大,解答此题的关键是作出辅助线,构造平行四边形,然后根据平行四边形的对角线互相平分即可解答.
证明题.
找相似题
(2013·西宁)如果等边三角形的边长为4,那么等边三角形的中位线长为( )
(2013·梧州)如图,△ABC以点O为旋转中心,旋转180°后得到△A′B′C′.ED是△ABC的中位线,经旋转后为线段E′D′.已知BC=4,则E′D′=( )
(2013·铜仁地区)已知△ABC的各边长度分别为3cm,4cm,5cm,则连结各边中点的三角形的周长为( )
(2013·广州)如图所示,四边形ABCD是梯形,AD∥BC,CA是∠BCD的平分线,且AB⊥AC,AB=4,AD=6,则tanB=( )
(2012·烟台)如图是跷跷板示意图,横板AB绕中点O上下转动,立柱OC与地面垂直,设B点的最大高度为h
1
.若将横板AB换成横板A′B′,且A′B′=2AB,O仍为A′B′的中点,设B′点的最大高度为h
2
,则下列结论正确的是( )