试题
题目:
如图所示,在四边形ABCD中,AD=BC,P是对角线BD的中点,M是DC的中点,N是AB的中点.请判断△PMN的形状,并说明理由.
答案
解:△PMN是等腰三角形.
理由如下:
∵点P是BD的中点,点M是CD的中点,
∴PM=
1
2
BC,
同理:PN=
1
2
AD,
∵AD=BC,
∴PM=PN,
∴△PMN是等腰三角形.
解:△PMN是等腰三角形.
理由如下:
∵点P是BD的中点,点M是CD的中点,
∴PM=
1
2
BC,
同理:PN=
1
2
AD,
∵AD=BC,
∴PM=PN,
∴△PMN是等腰三角形.
考点梳理
考点
分析
点评
三角形中位线定理;等腰三角形的判定.
易得PM是△BCD的中位线,那么PM等于BC的一半,同理可得PN为AD的一半,根据AD=BC,那么可得PM=PN,那么△PMN是等腰三角形.
用到的知识点为:三角形的中位线等于第三边的一半;有两边相等的三角形的是等腰三角形.
找相似题
(2013·西宁)如果等边三角形的边长为4,那么等边三角形的中位线长为( )
(2013·梧州)如图,△ABC以点O为旋转中心,旋转180°后得到△A′B′C′.ED是△ABC的中位线,经旋转后为线段E′D′.已知BC=4,则E′D′=( )
(2013·铜仁地区)已知△ABC的各边长度分别为3cm,4cm,5cm,则连结各边中点的三角形的周长为( )
(2013·广州)如图所示,四边形ABCD是梯形,AD∥BC,CA是∠BCD的平分线,且AB⊥AC,AB=4,AD=6,则tanB=( )
(2012·烟台)如图是跷跷板示意图,横板AB绕中点O上下转动,立柱OC与地面垂直,设B点的最大高度为h
1
.若将横板AB换成横板A′B′,且A′B′=2AB,O仍为A′B′的中点,设B′点的最大高度为h
2
,则下列结论正确的是( )