试题
题目:
如图,在△ABC中,∠ACB=90°,BC的垂直平分线交BC于D,交AB于点E,F在DE上,并且AF=CE.
求证:四边形ACEF是平行四边形.
答案
证明:∵DE垂直平分BC,
∴BD=CD,且ED∥AC
∴ED是△ABC的中位线.
∴BE=AE,FD∥AC.
Rt△ABC中,CE是斜边AB的中线,
∴CE=AE=AF.
∴∠F=∠5=∠1=∠2.
∴∠FAE=∠AEC.
∴AF∥EC.
又∵AF=EC,
∴四边形ACEF是平行四边形.
证明:∵DE垂直平分BC,
∴BD=CD,且ED∥AC
∴ED是△ABC的中位线.
∴BE=AE,FD∥AC.
Rt△ABC中,CE是斜边AB的中线,
∴CE=AE=AF.
∴∠F=∠5=∠1=∠2.
∴∠FAE=∠AEC.
∴AF∥EC.
又∵AF=EC,
∴四边形ACEF是平行四边形.
考点梳理
考点
分析
点评
专题
平行四边形的判定;线段垂直平分线的性质;三角形中位线定理.
已知了AF=EC,只需证明AF∥EC即可.DE垂直平分BC,易知DE是△ABC的中位线,则FE∥AC,BE=EA=CE=AF;因此△AFE、△AEC都是等腰三角形,可得∠F=∠5=∠1=∠2,即∠FAE=∠AEC,由此可证得AF∥EC.
此题主要考查了平行四边形的判定,涉及的知识点有:线段垂直平分线的性质、直角三角形和等腰三角形的性质、平行线的判定等.
证明题.
找相似题
(2013·西宁)如果等边三角形的边长为4,那么等边三角形的中位线长为( )
(2013·梧州)如图,△ABC以点O为旋转中心,旋转180°后得到△A′B′C′.ED是△ABC的中位线,经旋转后为线段E′D′.已知BC=4,则E′D′=( )
(2013·铜仁地区)已知△ABC的各边长度分别为3cm,4cm,5cm,则连结各边中点的三角形的周长为( )
(2013·广州)如图所示,四边形ABCD是梯形,AD∥BC,CA是∠BCD的平分线,且AB⊥AC,AB=4,AD=6,则tanB=( )
(2012·烟台)如图是跷跷板示意图,横板AB绕中点O上下转动,立柱OC与地面垂直,设B点的最大高度为h
1
.若将横板AB换成横板A′B′,且A′B′=2AB,O仍为A′B′的中点,设B′点的最大高度为h
2
,则下列结论正确的是( )