试题
题目:
如图,已知AD为△ABC的角平分线,AB<AC,在AC上截取CE=AB,M、N分别为BC、AE的中点.求证:MN∥AD.
答案
证明:连接BE,记BE中点为F,连接FN、FM,
∵FN为△EAB的中位线,
∴FN=
1
2
AB,FN∥AB,
∵FM为△BCE的中位线,
∴FM=
1
2
CE,FM∥CE,
∵CE=AB,
∴FN=FM,
∴∠3=∠4,
∵∠4=∠5,
∴∠3=∠5,
∵∠1+∠2=∠3+∠5,
∠1=∠2,
∴∠2=∠5,
∴NM∥AD.
证明:连接BE,记BE中点为F,连接FN、FM,
∵FN为△EAB的中位线,
∴FN=
1
2
AB,FN∥AB,
∵FM为△BCE的中位线,
∴FM=
1
2
CE,FM∥CE,
∵CE=AB,
∴FN=FM,
∴∠3=∠4,
∵∠4=∠5,
∴∠3=∠5,
∵∠1+∠2=∠3+∠5,
∠1=∠2,
∴∠2=∠5,
∴NM∥AD.
考点梳理
考点
分析
点评
平行线的判定;角平分线的定义;三角形中位线定理.
连接BE,记BE中点为F,连接FN、FM,首先根据三角形中位线定理证明FN=FM,再证明∠2=∠5,即可根据同位角相等两直线平行证出结论.
此题主要考查了平行线的判定与性质,三角形的中位线定理,解决问题的关键是正确画出辅助线,证明∠2=∠5.
找相似题
(2013·西宁)如果等边三角形的边长为4,那么等边三角形的中位线长为( )
(2013·梧州)如图,△ABC以点O为旋转中心,旋转180°后得到△A′B′C′.ED是△ABC的中位线,经旋转后为线段E′D′.已知BC=4,则E′D′=( )
(2013·铜仁地区)已知△ABC的各边长度分别为3cm,4cm,5cm,则连结各边中点的三角形的周长为( )
(2013·广州)如图所示,四边形ABCD是梯形,AD∥BC,CA是∠BCD的平分线,且AB⊥AC,AB=4,AD=6,则tanB=( )
(2012·烟台)如图是跷跷板示意图,横板AB绕中点O上下转动,立柱OC与地面垂直,设B点的最大高度为h
1
.若将横板AB换成横板A′B′,且A′B′=2AB,O仍为A′B′的中点,设B′点的最大高度为h
2
,则下列结论正确的是( )