试题
题目:
如图所示,在锐角△ABC中,AB<AC,AD⊥BC,交BC于点D,E,F,G分别是BC,CA,AB的中点,求证:四边形DEFG是等腰梯形.
答案
证明:∵G,F分别是AB,AC的中点,
∴GF∥DE,易得EF不平行于DG,
∴四边形DEFG是梯形.在Rt△ABD中,G为AB的中点,
∴DG=
1
2
AB.又E,F分别是BC,AC的中点,
∴EF=
1
2
AB,DG=EF,
∴四边形DEFG是等腰梯形.
证明:∵G,F分别是AB,AC的中点,
∴GF∥DE,易得EF不平行于DG,
∴四边形DEFG是梯形.在Rt△ABD中,G为AB的中点,
∴DG=
1
2
AB.又E,F分别是BC,AC的中点,
∴EF=
1
2
AB,DG=EF,
∴四边形DEFG是等腰梯形.
考点梳理
考点
分析
点评
专题
等腰梯形的判定;三角形中位线定理.
因为G,F分别是AB,AC的中点,所以GF∥DE,则四边形DEFG是梯形.在Rt△ABD中,G为AB的中点,则DG=
1
2
AB.而E,F分别是BC,AC的中点,则EF=
1
2
AB,所以DG=EF,所以四边形DEFG是等腰梯形.
此题主要考查了三角形的中位线定理和等腰梯形的判定.
证明题.
找相似题
(2013·西宁)如果等边三角形的边长为4,那么等边三角形的中位线长为( )
(2013·梧州)如图,△ABC以点O为旋转中心,旋转180°后得到△A′B′C′.ED是△ABC的中位线,经旋转后为线段E′D′.已知BC=4,则E′D′=( )
(2013·铜仁地区)已知△ABC的各边长度分别为3cm,4cm,5cm,则连结各边中点的三角形的周长为( )
(2013·广州)如图所示,四边形ABCD是梯形,AD∥BC,CA是∠BCD的平分线,且AB⊥AC,AB=4,AD=6,则tanB=( )
(2012·烟台)如图是跷跷板示意图,横板AB绕中点O上下转动,立柱OC与地面垂直,设B点的最大高度为h
1
.若将横板AB换成横板A′B′,且A′B′=2AB,O仍为A′B′的中点,设B′点的最大高度为h
2
,则下列结论正确的是( )