试题
题目:
如图所示,在四边形ABCD中,AD=BC,E,F,G分别是AB,CD,AC的中点.求证:△EFG是等腰三角形.
答案
证明:∵E,F,G分别是AB,CD,AC的中点.
∴GF=
1
2
AD,GE=
1
2
BC.
又∵AD=BC,
∴GF=GE,
即△EFG是等腰三角形.
证明:∵E,F,G分别是AB,CD,AC的中点.
∴GF=
1
2
AD,GE=
1
2
BC.
又∵AD=BC,
∴GF=GE,
即△EFG是等腰三角形.
考点梳理
考点
分析
点评
专题
三角形中位线定理;等腰三角形的判定.
由于E,F,G分别是AB,CD,AC的中点,利用中位线定理,GF=
1
2
AD,GE=
1
2
BC,又因为AD=BC,所以GF=GE.
本题通过给出的中点,利用中位线定理,证得边相等,从而证明等腰三角形,是一道基础题.
证明题.
找相似题
(2013·西宁)如果等边三角形的边长为4,那么等边三角形的中位线长为( )
(2013·梧州)如图,△ABC以点O为旋转中心,旋转180°后得到△A′B′C′.ED是△ABC的中位线,经旋转后为线段E′D′.已知BC=4,则E′D′=( )
(2013·铜仁地区)已知△ABC的各边长度分别为3cm,4cm,5cm,则连结各边中点的三角形的周长为( )
(2013·广州)如图所示,四边形ABCD是梯形,AD∥BC,CA是∠BCD的平分线,且AB⊥AC,AB=4,AD=6,则tanB=( )
(2012·烟台)如图是跷跷板示意图,横板AB绕中点O上下转动,立柱OC与地面垂直,设B点的最大高度为h
1
.若将横板AB换成横板A′B′,且A′B′=2AB,O仍为A′B′的中点,设B′点的最大高度为h
2
,则下列结论正确的是( )