试题
题目:
如图,在△ABC中,AB=AC,延长AB到D,使BD=AB,E为AB中点,连接CE、CD,求证:CD=2EC.
答案
证明:取AC的中点F,连接BF,
∵AB=AC,点E,F分别是AB,AC的中点,
∴AE=AF,
∵∠A=∠A,AB=AC,
∴△ABF≌△ACE(SAS),
∴BF=CE,
∵BD=AB,AF=CF,
∴DC=2BF,
∴DC=2CE.
证明:取AC的中点F,连接BF,
∵AB=AC,点E,F分别是AB,AC的中点,
∴AE=AF,
∵∠A=∠A,AB=AC,
∴△ABF≌△ACE(SAS),
∴BF=CE,
∵BD=AB,AF=CF,
∴DC=2BF,
∴DC=2CE.
考点梳理
考点
分析
点评
专题
三角形中位线定理;等腰三角形的性质.
取AC的中点F,连接BF,根据中点的性质可得到AE=AF,再根据SAS判定△ABF≌△ACE,由全等三角形的对应边相等可得到BF=CE,再利用三角形中位线定理得到DC=2BF,即证得了DC=2CE.
此题主要考查等腰三角形的性质及三角形中位线定理的综合运用.
证明题.
找相似题
(2013·西宁)如果等边三角形的边长为4,那么等边三角形的中位线长为( )
(2013·梧州)如图,△ABC以点O为旋转中心,旋转180°后得到△A′B′C′.ED是△ABC的中位线,经旋转后为线段E′D′.已知BC=4,则E′D′=( )
(2013·铜仁地区)已知△ABC的各边长度分别为3cm,4cm,5cm,则连结各边中点的三角形的周长为( )
(2013·广州)如图所示,四边形ABCD是梯形,AD∥BC,CA是∠BCD的平分线,且AB⊥AC,AB=4,AD=6,则tanB=( )
(2012·烟台)如图是跷跷板示意图,横板AB绕中点O上下转动,立柱OC与地面垂直,设B点的最大高度为h
1
.若将横板AB换成横板A′B′,且A′B′=2AB,O仍为A′B′的中点,设B′点的最大高度为h
2
,则下列结论正确的是( )