试题
题目:
如图,平行四边形ABCD中,点E、F分别是AD、AB的中点,EF交AC于点G,那么AG:GC的值为( )
A.1:2
B.1:3
C.1:4
D.2:3
答案
B
解:连接BD,与AC相交于O,
∵点E、F分别是AD、AB的中点,
∴EF是△ABD的中位线,
∴EF∥DB,且EF=
1
2
DB,
∴△AEF∽△ADB,
AE
AD
=
AG
AO
,
∴
EF
DB
=
AE
AD
=
1
2
,
∴
AG
AO
=
1
2
,即G为AO的中点,
∴AG=GO,又OA=OC,
∴AG:GC=1:3.
故选B.
考点梳理
考点
分析
点评
平行四边形的性质;三角形中位线定理.
由点E、F分别是AD、AB的中点,故考虑到利用三角形的中位线,故连接BD,运用中位线的性质及平行四边形的性质解题.
此题主要考查平行四边形的性质和中位线的性质,解题关键是做出辅助线从而灵活运用三角形中位线定理,难度一般.
找相似题
(2013·西宁)如果等边三角形的边长为4,那么等边三角形的中位线长为( )
(2013·梧州)如图,△ABC以点O为旋转中心,旋转180°后得到△A′B′C′.ED是△ABC的中位线,经旋转后为线段E′D′.已知BC=4,则E′D′=( )
(2013·铜仁地区)已知△ABC的各边长度分别为3cm,4cm,5cm,则连结各边中点的三角形的周长为( )
(2013·广州)如图所示,四边形ABCD是梯形,AD∥BC,CA是∠BCD的平分线,且AB⊥AC,AB=4,AD=6,则tanB=( )
(2012·烟台)如图是跷跷板示意图,横板AB绕中点O上下转动,立柱OC与地面垂直,设B点的最大高度为h
1
.若将横板AB换成横板A′B′,且A′B′=2AB,O仍为A′B′的中点,设B′点的最大高度为h
2
,则下列结论正确的是( )