试题
题目:
(2013·昆明)如图,在△ABC中,点D,E分别是AB,AC的中点,∠A=50°,∠ADE=60°,则∠C的度数为( )
A.50°
B.60°
C.70°
D.80°
答案
C
解:由题意得,∠AED=180°-∠A-∠ADE=70°,
∵点D,E分别是AB,AC的中点,
∴DE是△ABC的中位线,
∴DE∥BC,
∴∠C=∠AED=70°.
故选C.
考点梳理
考点
分析
点评
三角形中位线定理;平行线的性质;三角形内角和定理.
在△ADE中利用内角和定理求出∠AED,然后判断DE∥BC,利用平行线的性质可得出∠C.
本题考查了三角形的中位线定理,解答本题的关键是掌握三角形中位线定理的内容:三角形的中位线平行于第三边,并且等于第三边的一半.
找相似题
(2013·西宁)如果等边三角形的边长为4,那么等边三角形的中位线长为( )
(2013·梧州)如图,△ABC以点O为旋转中心,旋转180°后得到△A′B′C′.ED是△ABC的中位线,经旋转后为线段E′D′.已知BC=4,则E′D′=( )
(2013·铜仁地区)已知△ABC的各边长度分别为3cm,4cm,5cm,则连结各边中点的三角形的周长为( )
(2013·广州)如图所示,四边形ABCD是梯形,AD∥BC,CA是∠BCD的平分线,且AB⊥AC,AB=4,AD=6,则tanB=( )
(2012·烟台)如图是跷跷板示意图,横板AB绕中点O上下转动,立柱OC与地面垂直,设B点的最大高度为h
1
.若将横板AB换成横板A′B′,且A′B′=2AB,O仍为A′B′的中点,设B′点的最大高度为h
2
,则下列结论正确的是( )