试题
题目:
(2012·盐田区二模)如图,·ABCD的对角线AC、BD相交于点O,E是BC边的中点,OE=1.那么AB=( )
A.
1
2
B.1
C.2
D.4
答案
C
解:∵四边形ABCD是平行四边形,
∴OA=OC;
又∵点E是BC的中点,
∴OE是△ABC的中位线,
则根据三角形的中位线定理可得:AB=2OE=2×1=2.
故选C.
考点梳理
考点
分析
点评
三角形中位线定理;平行四边形的性质.
因为四边形ABCD是平行四边形,所以OA=OC;再根据点E是BC的中点,得出OE是△ABC的中位线,由OE=1,即可求得AB=2.
此题考查了平行四边形的性质:平行四边形的对角线互相平分.还考查了三角形中位线的性质:三角形的中位线平行且等于三角形第三边的一半.
找相似题
(2013·西宁)如果等边三角形的边长为4,那么等边三角形的中位线长为( )
(2013·梧州)如图,△ABC以点O为旋转中心,旋转180°后得到△A′B′C′.ED是△ABC的中位线,经旋转后为线段E′D′.已知BC=4,则E′D′=( )
(2013·铜仁地区)已知△ABC的各边长度分别为3cm,4cm,5cm,则连结各边中点的三角形的周长为( )
(2013·广州)如图所示,四边形ABCD是梯形,AD∥BC,CA是∠BCD的平分线,且AB⊥AC,AB=4,AD=6,则tanB=( )
(2012·烟台)如图是跷跷板示意图,横板AB绕中点O上下转动,立柱OC与地面垂直,设B点的最大高度为h
1
.若将横板AB换成横板A′B′,且A′B′=2AB,O仍为A′B′的中点,设B′点的最大高度为h
2
,则下列结论正确的是( )