试题
题目:
(2006·海南)如图,在菱形ABCD中,E,F,F,H分别是菱形四边的中点,连接EG与FH交于点O,则图中共有菱形( )
A.4个
B.5个
C.6个
D.7个
答案
B
解:∵四边形ABCD是菱形,E,F,F,H分别是菱形四边的中点,
∴AE=AH=HD=GD=CG=CF=FB=BE=OE=OG=OH=OF,
∴四边形AEOH,HOGD,EOFB,OFGC和ABCD均为菱形,共5个.
故选B.
考点梳理
考点
分析
点评
菱形的判定与性质;三角形中位线定理.
由菱形的性质和判定,图中的菱形由:四边形AEOH,HOGD,EOFB,OFGC和ABCD,共5个.
本题考查了菱形的判定:四边相等的四边形是菱形.
找相似题
(2013·西宁)如果等边三角形的边长为4,那么等边三角形的中位线长为( )
(2013·梧州)如图,△ABC以点O为旋转中心,旋转180°后得到△A′B′C′.ED是△ABC的中位线,经旋转后为线段E′D′.已知BC=4,则E′D′=( )
(2013·铜仁地区)已知△ABC的各边长度分别为3cm,4cm,5cm,则连结各边中点的三角形的周长为( )
(2013·广州)如图所示,四边形ABCD是梯形,AD∥BC,CA是∠BCD的平分线,且AB⊥AC,AB=4,AD=6,则tanB=( )
(2012·烟台)如图是跷跷板示意图,横板AB绕中点O上下转动,立柱OC与地面垂直,设B点的最大高度为h
1
.若将横板AB换成横板A′B′,且A′B′=2AB,O仍为A′B′的中点,设B′点的最大高度为h
2
,则下列结论正确的是( )