试题
题目:
(2006·杭州)如图,△ABC、△ADE及△EFG都是等边三角形,D和G分别为AC和AE的中点.若AB=4时,则图形ABCDEFG外围的周长是( )
A.12
B.15
C.18
D.21
答案
B
解:∵△ABC、△ADE及△EFG都是等边三角形,D和G分别为AC和AE的中点,AB=AC=BC=4
∴DE=CD=
1
2
AC=
1
2
×4=2,EF=GF=AG=
1
2
DE=
1
2
×2=1
∴图形ABCDEFG外围的周长是AB+CD+BC+DE+EF+GF+AG=4+2+4+2+1+1+1=15
故选B.
考点梳理
考点
分析
点评
三角形中位线定理;等边三角形的性质.
利用平移性质可得图形ABCDEFG外围的周长等于等边三角形△ABC的周长加上AE,GF长,利用三角形中位线长定理可得其余未知线段的长.
本题考查的是等边三角形的性质及三角形中位线定理.
找相似题
(2013·西宁)如果等边三角形的边长为4,那么等边三角形的中位线长为( )
(2013·梧州)如图,△ABC以点O为旋转中心,旋转180°后得到△A′B′C′.ED是△ABC的中位线,经旋转后为线段E′D′.已知BC=4,则E′D′=( )
(2013·铜仁地区)已知△ABC的各边长度分别为3cm,4cm,5cm,则连结各边中点的三角形的周长为( )
(2013·广州)如图所示,四边形ABCD是梯形,AD∥BC,CA是∠BCD的平分线,且AB⊥AC,AB=4,AD=6,则tanB=( )
(2012·烟台)如图是跷跷板示意图,横板AB绕中点O上下转动,立柱OC与地面垂直,设B点的最大高度为h
1
.若将横板AB换成横板A′B′,且A′B′=2AB,O仍为A′B′的中点,设B′点的最大高度为h
2
,则下列结论正确的是( )