试题
题目:
(2011·孝感)如图,在△ABC中,BD、CE是△ABC的中线,BD与CE相交于点O,点F、G分别是BO、CO的中点,连接AO.若AO=6cm,BC=8cm,则四边形DEFG的周长是( )
A.14cm
B.18cm
C.24cm
D.28cm
答案
A
解:∵BD,CE是△ABC的中线,
∴ED∥BC且ED=
1
2
BC,
∵F是BO的中点,G是CO的中点,
∴FG∥BC且FG=
1
2
BC,
∴ED=FG=
1
2
BC=4cm,
同理GD=EF=
1
2
AO=3cm,
∴四边形EFDG的周长为3+4+3+4=14(cm).
故选A.
考点梳理
考点
分析
点评
专题
平行四边形的判定与性质;三角形的重心;三角形中位线定理.
主要考查平行四边形的判定以及三角形中位线的运用,由中位线定理,可得EF∥AO,FG∥BC,且都等于边长BC的一半.分析到此,此题便可解答.
本题考查了平行四边形的判定和三角形的中位线定理,三角形的中位线的性质定理,为证明线段相等和平行提供了依据.
计算题.
找相似题
(2013·西宁)如果等边三角形的边长为4,那么等边三角形的中位线长为( )
(2013·梧州)如图,△ABC以点O为旋转中心,旋转180°后得到△A′B′C′.ED是△ABC的中位线,经旋转后为线段E′D′.已知BC=4,则E′D′=( )
(2013·铜仁地区)已知△ABC的各边长度分别为3cm,4cm,5cm,则连结各边中点的三角形的周长为( )
(2013·广州)如图所示,四边形ABCD是梯形,AD∥BC,CA是∠BCD的平分线,且AB⊥AC,AB=4,AD=6,则tanB=( )
(2012·烟台)如图是跷跷板示意图,横板AB绕中点O上下转动,立柱OC与地面垂直,设B点的最大高度为h
1
.若将横板AB换成横板A′B′,且A′B′=2AB,O仍为A′B′的中点,设B′点的最大高度为h
2
,则下列结论正确的是( )