试题
题目:
(2011·烟台)如图,梯形ABCD中,AB∥CD,点E、F、G分别是BD、AC、DC的中点.已知两底差是6,两腰和是12,则△EFG的周长是( )
A.8
B.9
C.10
D.12
答案
B
解:连接AE,并延长交CD于K,
∵AB∥CD,
∴∠BAE=∠DKE,∠ABD=∠EDK,
∵点E、F、G分别是BD、AC、DC的中点.
∴BE=DE,
∴△AEB≌△KED(AAS),
∴DK=AB,AE=EK,EF为△ACK的中位线,
∴EF=
1
2
CK=
1
2
(DC-DK)=
1
2
(DC-AB),
∵EG为△BCD的中位线,∴EG=
1
2
BC,
又∵FG为△ACD的中位线,∴FG=
1
2
AD,
∴EG+GF=
1
2
(AD+BC),
∵两腰和是12,即AD+BC=12,两底差是6,即DC-AB=6,
∴EG+GF=6,FE=3,
∴△EFG的周长是6+3=9.
故选B.
考点梳理
考点
分析
点评
专题
三角形中位线定理;全等三角形的判定与性质.
根据三角形中位线定理易得所求的三角形的各边长为原三角形各边长的一半,那么所求的三角形的周长就等于原三角形周长的一半.
此题考查的是三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半.
计算题.
找相似题
(2013·西宁)如果等边三角形的边长为4,那么等边三角形的中位线长为( )
(2013·梧州)如图,△ABC以点O为旋转中心,旋转180°后得到△A′B′C′.ED是△ABC的中位线,经旋转后为线段E′D′.已知BC=4,则E′D′=( )
(2013·铜仁地区)已知△ABC的各边长度分别为3cm,4cm,5cm,则连结各边中点的三角形的周长为( )
(2013·广州)如图所示,四边形ABCD是梯形,AD∥BC,CA是∠BCD的平分线,且AB⊥AC,AB=4,AD=6,则tanB=( )
(2012·烟台)如图是跷跷板示意图,横板AB绕中点O上下转动,立柱OC与地面垂直,设B点的最大高度为h
1
.若将横板AB换成横板A′B′,且A′B′=2AB,O仍为A′B′的中点,设B′点的最大高度为h
2
,则下列结论正确的是( )