答案

(1)证明:连接AP.
∵AB=AC,
∴S
△ABC=S
△ABP+S
△ACP=
AB×PD+
AC×PE=
×AB×(PD+PE),
∵S
△ABC=
AB×CF,
∴PD+PE=CF.
(2)解:CF+PE=PD.

P点在BC的延长线上,过P做AB⊥PD,过C作AB⊥CF,过P作PE⊥AC,交AC的延长线于E点,连接AP
∵AB=AC,
∴S
△APB=S
△ABC+S
△ACP=
AB×CF+
AC×PE=
×AB×(CF+PE),
∵S
△APB=
AB×PD,
∴CF+PE=PD.

(1)证明:连接AP.
∵AB=AC,
∴S
△ABC=S
△ABP+S
△ACP=
AB×PD+
AC×PE=
×AB×(PD+PE),
∵S
△ABC=
AB×CF,
∴PD+PE=CF.
(2)解:CF+PE=PD.

P点在BC的延长线上,过P做AB⊥PD,过C作AB⊥CF,过P作PE⊥AC,交AC的延长线于E点,连接AP
∵AB=AC,
∴S
△APB=S
△ABC+S
△ACP=
AB×CF+
AC×PE=
×AB×(CF+PE),
∵S
△APB=
AB×PD,
∴CF+PE=PD.