试题
题目:
(2004·沈阳)如图,⊙O
1
和⊙O
2
外切于点A,BC是⊙O
1
和⊙O
2
的公切线,B、C为切点.
(1)求证:AB⊥AC;
(2)过点A的直线分别交⊙O
1
、⊙O
2
于点D、E,且DE是连心线时,直线DB与直线EC交于点F.请在图中画出图形,并判断DF与EF是否互相垂直,请证明;若不垂直,请说明理由;
(3)在(2)的其他条件不变的情况下,将直线DE绕点A旋转(DE不与点A、B、C重合),请另画出图形,并判断DF与EF是否互相垂直?若垂直,请证明;若不垂直,请说明理由.
答案
(1)证明:如图1,过点A作⊙O
1
和⊙O
2
的内公切线交BC于点O,
∵OB、OA是⊙O
1
的切线,
∴OB=OA.
同理OC=OA.
∴OB=OC=OA.
∴△ABC是直角三角形.
∴AB⊥AC.
(2)解:DF⊥EF.理由如下:
如图1,∵⊙O
1
和⊙O
2
外切于点A,
∴∠ABC=∠FDA,∠ACB=∠FEA,
由(1)得∠ABC+∠ACB=90°,
∴∠FDA+∠FEA=90°,
∴∠DFE=90°,即DF⊥EF;
(3)解:DF⊥EF.理由如下:
第一种情况:如图2,
∵⊙O
1
和⊙O
2
外切于点A,
∴∠ABC=∠FDA,∠ACB=∠FEA.
由(1)得∠ABC+∠ACB=90°,
∴∠FDA+∠FEA=90°.
∴∠DFE=90°,即DF⊥EF.
第二种情况:如图3,
∵∠ACB=∠FEA,∠CBD=∠BAD,∠EDF=∠DBA+∠DAB,
∴∠EDF=∠ABC.
∵∠ABC+∠ACB=90°,
∴∠EDF+∠AEC=90°.
∴∠DFE=90°,即EF⊥DF.
(1)证明:如图1,过点A作⊙O
1
和⊙O
2
的内公切线交BC于点O,
∵OB、OA是⊙O
1
的切线,
∴OB=OA.
同理OC=OA.
∴OB=OC=OA.
∴△ABC是直角三角形.
∴AB⊥AC.
(2)解:DF⊥EF.理由如下:
如图1,∵⊙O
1
和⊙O
2
外切于点A,
∴∠ABC=∠FDA,∠ACB=∠FEA,
由(1)得∠ABC+∠ACB=90°,
∴∠FDA+∠FEA=90°,
∴∠DFE=90°,即DF⊥EF;
(3)解:DF⊥EF.理由如下:
第一种情况:如图2,
∵⊙O
1
和⊙O
2
外切于点A,
∴∠ABC=∠FDA,∠ACB=∠FEA.
由(1)得∠ABC+∠ACB=90°,
∴∠FDA+∠FEA=90°.
∴∠DFE=90°,即DF⊥EF.
第二种情况:如图3,
∵∠ACB=∠FEA,∠CBD=∠BAD,∠EDF=∠DBA+∠DAB,
∴∠EDF=∠ABC.
∵∠ABC+∠ACB=90°,
∴∠EDF+∠AEC=90°.
∴∠DFE=90°,即EF⊥DF.
考点梳理
考点
分析
点评
专题
相切两圆的性质.
(1)作两圆的内公切线,根据切线长定理,得到三角形一边上的中线等于这边的一半,从而证明直角三角形;
(2)根据弦切角定理,结合(1)中的结论进行证明;
(3)根据弦切角定理以及圆周角定理,和(1)中的结论即可证明.
作两圆的内公切线是外切两圆中常见的辅助线之一.熟练运用弦切角定理、圆周角定理、切线长定理.注意一题多变的类型题的解法.
证明题;压轴题;探究型.
找相似题
(2011·淄博)如图,矩形ABCD中,AB=4,以点B为圆心,BA为半径画弧交BC于点E,以点O为圆心的⊙O与弧AE,边AD,DC都相切.把扇形BAE作一个圆锥的侧面,该圆锥的底面圆恰好是⊙O,则AD的长为( )
(2010·绍兴)如图为某机械装置的截面图,相切的两圆⊙O
1
,⊙O
2
均与⊙O的弧AB相切,且O
1
O
2
∥l
1
(l
1
为水平线),⊙O
1
,⊙O
2
的半径均为30mm,弧AB的最低点到l
1
的距离为30mm,公切线l
2
与l
1
间的距离为100mm.则⊙O的半径为( )
(2010·兰州)已知两圆的半径R、r分别为方程x
2
-5x+6=0的两根,两圆的圆心距为1,两圆的位置关系是( )
(2006·武汉)(人教版)如图,用半径R=3cm,r=2cm的钢球测量口小内大的内孔的直径D.测得钢球顶点与孔口平面的距离分别为a=4cm,b=2cm,则内孔直径D的大小为( )
(2005·武汉)如图,外切于P点的⊙O
1
和⊙O
2
是半径为3cm的等圆,连心线交⊙O
1
于点A,交⊙O
2
于点B,AC与⊙O
2
相切于点C,连接PC,则PC的长为( )