试题
题目:
(2010·绍兴)如图为某机械装置的截面图,相切的两圆⊙O
1
,⊙O
2
均与⊙O的弧AB相切,且O
1
O
2
∥l
1
(l
1
为水平线),⊙O
1
,⊙O
2
的半径均为30mm,弧AB的最低点到l
1
的距离为30mm,公切线l
2
与l
1
间的距离为100mm.则⊙O的半径为( )
A.70mm
B.80mm
C.85mm
D.100mm
答案
B
解:如图,设⊙O的半径为Rmm,依题意,得
CE=100-30=70(mm),
∵l
2
∥O
1
O
2
,∴CD=O
1
D=30(mm),
DE=CE-CD=70-30=40(mm),
OD=OE-DE=R-40(mm),
在Rt△OO
1
D中,O
1
O=R-30(mm),O
1
D=30mm,
由勾股定理,得O
1
D
2
+OD
2
=O
1
O
2
,
即30
2
+(R-40)
2
=(R-30)
2
,
解得R=80mm.故选B.
考点梳理
考点
分析
点评
专题
相切两圆的性质.
设⊙O的半径为R,由图可知,CE=100-30=70mm,DE=CE-CD=70-30=40mm,OD=OE-DE=R-40(mm),在Rt△OO
1
D中,运用勾股定理求R.
根据直线与圆相切,圆与圆相切及题中的数量关系,把问题转化到直角三角形中,用勾股定理求解,是解决圆的问题常用的方法.
压轴题.
找相似题
(2011·淄博)如图,矩形ABCD中,AB=4,以点B为圆心,BA为半径画弧交BC于点E,以点O为圆心的⊙O与弧AE,边AD,DC都相切.把扇形BAE作一个圆锥的侧面,该圆锥的底面圆恰好是⊙O,则AD的长为( )
(2010·兰州)已知两圆的半径R、r分别为方程x
2
-5x+6=0的两根,两圆的圆心距为1,两圆的位置关系是( )
(2006·武汉)(人教版)如图,用半径R=3cm,r=2cm的钢球测量口小内大的内孔的直径D.测得钢球顶点与孔口平面的距离分别为a=4cm,b=2cm,则内孔直径D的大小为( )
(2005·武汉)如图,外切于P点的⊙O
1
和⊙O
2
是半径为3cm的等圆,连心线交⊙O
1
于点A,交⊙O
2
于点B,AC与⊙O
2
相切于点C,连接PC,则PC的长为( )
(2004·杭州)如图,三个半径为
3
的圆两两外切,且△ABC的每一边都与其中的两个圆相切,那么△ABC的周长是( )