试题
题目:
(2010·兰州)已知两圆的半径R、r分别为方程x
2
-5x+6=0的两根,两圆的圆心距为1,两圆的位置关系是( )
A.相交
B.外离
C.外切
D.内切
答案
D
解:∵两圆的半径分别是方程x
2
-5x+6=0的两根,
∴两圆半径和为:R+r=5,半径积为:Rr=6,
∴半径差=|R-r|=
(R-r)
2
=
(R+r)
2
-4Rr
=
5
2
-4×6
=1,
即圆心距等于半径差,
∴根据圆心距与半径之间的数量关系可知⊙O
1
与⊙O
2
的位置关系是内切.
故选D.
考点梳理
考点
分析
点评
相切两圆的性质;解一元二次方程-因式分解法.
本题可先求出方程的根即两圆的半径R、r,再根据由数量关系来判断两圆位置关系的方法,确定两圆的位置关系.设两圆圆心距为P,两圆半径分别为R和r,且R≥r,则有:外离P>R+r;外切P=R+r;相交R-r<P<R+r;内切P=R-r;内含P<R-r.
本题考查了解一元二次方程和由数量关系来判断两圆位置关系的方法.注意此类题型可直接求出解判断,也可利用根与系数的关系找到两个根的差或和.
找相似题
(2011·淄博)如图,矩形ABCD中,AB=4,以点B为圆心,BA为半径画弧交BC于点E,以点O为圆心的⊙O与弧AE,边AD,DC都相切.把扇形BAE作一个圆锥的侧面,该圆锥的底面圆恰好是⊙O,则AD的长为( )
(2010·绍兴)如图为某机械装置的截面图,相切的两圆⊙O
1
,⊙O
2
均与⊙O的弧AB相切,且O
1
O
2
∥l
1
(l
1
为水平线),⊙O
1
,⊙O
2
的半径均为30mm,弧AB的最低点到l
1
的距离为30mm,公切线l
2
与l
1
间的距离为100mm.则⊙O的半径为( )
(2006·武汉)(人教版)如图,用半径R=3cm,r=2cm的钢球测量口小内大的内孔的直径D.测得钢球顶点与孔口平面的距离分别为a=4cm,b=2cm,则内孔直径D的大小为( )
(2005·武汉)如图,外切于P点的⊙O
1
和⊙O
2
是半径为3cm的等圆,连心线交⊙O
1
于点A,交⊙O
2
于点B,AC与⊙O
2
相切于点C,连接PC,则PC的长为( )
(2004·杭州)如图,三个半径为
3
的圆两两外切,且△ABC的每一边都与其中的两个圆相切,那么△ABC的周长是( )