试题
题目:
已知矩形ABCD,AB=8,AD=9,工人师傅在铁皮上剪去一个和三边都相切的⊙P后,在剩余部分废料上再剪去一个最大的⊙Q,那么⊙Q的直径是
2
2
.
答案
2
解:设圆与BC相切于点E,连接QP,PE.作QF⊥PE于F.
则直角△OPF中,若设⊙Q的半径是x,则PF=4-x,PQ=4+x,QF=BC-x-4=5-x;
在直角三角形FPQ中,根据勾股定理就得到x=1,因而⊙Q的直径是2.
考点梳理
考点
分析
点评
相切两圆的性质;勾股定理.
连接QP,PE.作QF⊥PE于F.根据相切两圆的性质和勾股定理求解.
已知两个圆相切时,本题中的辅助线是常用到的,需要熟记.
找相似题
(2011·淄博)如图,矩形ABCD中,AB=4,以点B为圆心,BA为半径画弧交BC于点E,以点O为圆心的⊙O与弧AE,边AD,DC都相切.把扇形BAE作一个圆锥的侧面,该圆锥的底面圆恰好是⊙O,则AD的长为( )
(2010·绍兴)如图为某机械装置的截面图,相切的两圆⊙O
1
,⊙O
2
均与⊙O的弧AB相切,且O
1
O
2
∥l
1
(l
1
为水平线),⊙O
1
,⊙O
2
的半径均为30mm,弧AB的最低点到l
1
的距离为30mm,公切线l
2
与l
1
间的距离为100mm.则⊙O的半径为( )
(2010·兰州)已知两圆的半径R、r分别为方程x
2
-5x+6=0的两根,两圆的圆心距为1,两圆的位置关系是( )
(2006·武汉)(人教版)如图,用半径R=3cm,r=2cm的钢球测量口小内大的内孔的直径D.测得钢球顶点与孔口平面的距离分别为a=4cm,b=2cm,则内孔直径D的大小为( )
(2005·武汉)如图,外切于P点的⊙O
1
和⊙O
2
是半径为3cm的等圆,连心线交⊙O
1
于点A,交⊙O
2
于点B,AC与⊙O
2
相切于点C,连接PC,则PC的长为( )