试题
题目:
(2011·闸北区一模)如图,正方形ABCD中,E是BC边上一点,以E为圆心、EC为半径的半圆与以A为圆心,AB为半径的圆弧外切,则cot∠EAB的值为
4
3
4
3
.
答案
4
3
解:设正方形ABCD的边长为1,⊙E的半径为x,即⊙A的半径为1,
结合题意,在Rt△ABE中,AB=1,AE=1+x,BE=1-x;
故有(1+x)
2
=(1-x)
2
+1;
解得x=
1
4
,
即BE=
3
4
,
所以cot∠EAB=
4
3
.
故答案为
4
3
.
考点梳理
考点
分析
点评
专题
相切两圆的性质;正方形的性质;锐角三角函数的定义.
结合题意,主要利用勾股定理在正方形中的应用,设正方形的边长为1,⊙E的半径为x,分别表示出Rt△ABE的三边,列出方程,求解即可得出⊙E的半径为,从而得出cot∠EAB的值.
本题主要考查了在两圆相切中勾股定理的实际应用,以及三角函数的性质.
数形结合.
找相似题
(2011·淄博)如图,矩形ABCD中,AB=4,以点B为圆心,BA为半径画弧交BC于点E,以点O为圆心的⊙O与弧AE,边AD,DC都相切.把扇形BAE作一个圆锥的侧面,该圆锥的底面圆恰好是⊙O,则AD的长为( )
(2010·绍兴)如图为某机械装置的截面图,相切的两圆⊙O
1
,⊙O
2
均与⊙O的弧AB相切,且O
1
O
2
∥l
1
(l
1
为水平线),⊙O
1
,⊙O
2
的半径均为30mm,弧AB的最低点到l
1
的距离为30mm,公切线l
2
与l
1
间的距离为100mm.则⊙O的半径为( )
(2010·兰州)已知两圆的半径R、r分别为方程x
2
-5x+6=0的两根,两圆的圆心距为1,两圆的位置关系是( )
(2006·武汉)(人教版)如图,用半径R=3cm,r=2cm的钢球测量口小内大的内孔的直径D.测得钢球顶点与孔口平面的距离分别为a=4cm,b=2cm,则内孔直径D的大小为( )
(2005·武汉)如图,外切于P点的⊙O
1
和⊙O
2
是半径为3cm的等圆,连心线交⊙O
1
于点A,交⊙O
2
于点B,AC与⊙O
2
相切于点C,连接PC,则PC的长为( )