试题

题目:
青果学院如图,⊙O1、⊙O2内切于P点,连心线和⊙O1、⊙O2分别交于A、B两点,过P点的直线与⊙O1、⊙O2分别交于C、D两点,若∠BPC=60°,AB=2,则CD=(  )



答案
A
青果学院解:连接AC,BD,
∵⊙O1、⊙O2内切于P点,连心线和⊙O1、⊙O2分别交于A、B两点,
∴PA是⊙O1直径,PB是⊙O2直径,
∴∠PCA=∠PDB=90°,
∵∠BPC=60°,AB=2,
∴PC=
1
2
PA,PD=
1
2
PB=
1
2
(PA+2)=PC+CD=
1
2
PA+CD,
1
2
PA+1=
1
2
PA+CD,
∴CD=1.
故选:A.
考点梳理
相切两圆的性质.
根据相切两圆的性质得出相切两圆连心线必过切点,以及利用解直角三角形的知识求出
1
2
PA+1=
1
2
PA+CD,从而求出即可.
此题主要考查了相切两圆的性质已积解直角三角新,利用其性质得出∠PCA=∠PDB=90°,进而求出PD=
1
2
PB=
1
2
(PA+2)=PC+CD=
1
2
PA+CD是解题关键.
找相似题