试题
题目:
(2012·曲阜市模拟)如图,在正方形ABCD中,O是CD边上一点,以O为圆心,OD为半径的半圆恰好与以B为圆心,BC为半径的扇形的弧外切,则sin∠OBC的值为( )
A.
4
3
B.
3
4
C.
4
5
D.
3
5
答案
D
解:设正方形的边长是1,半圆的半径是x.
则OB=1+x,OC=1-x.
在Rt△OBC中,根据勾股定理,得
(1+x)
2
=(1-x)
2
+1,
x=
1
4
.
则OB=
5
4
,OC=
3
4
.
则sin∠OBC=
OC
OB
=
3
5
.
故选:D.
考点梳理
考点
分析
点评
相切两圆的性质;正方形的性质.
设正方形的边长是1,半圆的半径是x.根据两圆外切,则圆心距等于两圆半径之和表示OB的长,从而根据勾股定理求得x的值,进一步根据锐角三角函数的概念求解.
此题主要考查了相切两圆的性质、勾股定理以及锐角三角函数的概念,得出半圆的半径是解题关键.
找相似题
(2011·淄博)如图,矩形ABCD中,AB=4,以点B为圆心,BA为半径画弧交BC于点E,以点O为圆心的⊙O与弧AE,边AD,DC都相切.把扇形BAE作一个圆锥的侧面,该圆锥的底面圆恰好是⊙O,则AD的长为( )
(2010·绍兴)如图为某机械装置的截面图,相切的两圆⊙O
1
,⊙O
2
均与⊙O的弧AB相切,且O
1
O
2
∥l
1
(l
1
为水平线),⊙O
1
,⊙O
2
的半径均为30mm,弧AB的最低点到l
1
的距离为30mm,公切线l
2
与l
1
间的距离为100mm.则⊙O的半径为( )
(2010·兰州)已知两圆的半径R、r分别为方程x
2
-5x+6=0的两根,两圆的圆心距为1,两圆的位置关系是( )
(2006·武汉)(人教版)如图,用半径R=3cm,r=2cm的钢球测量口小内大的内孔的直径D.测得钢球顶点与孔口平面的距离分别为a=4cm,b=2cm,则内孔直径D的大小为( )
(2005·武汉)如图,外切于P点的⊙O
1
和⊙O
2
是半径为3cm的等圆,连心线交⊙O
1
于点A,交⊙O
2
于点B,AC与⊙O
2
相切于点C,连接PC,则PC的长为( )