试题
题目:
如图甲,有一个塔高40米,位于一座山上,在其下方有一个坡度i=1:1的斜坡,某一时刻,身高1.60米的同学小明测得自己的影子(在平地上)为0.8米,那么,此时这个塔在斜坡上的影子长为多少米?(可借用图形乙)
答案
解:过点C作CE⊥AE于E(如图).
∵斜坡的坡度为i=1:1,
∴∠BCE=45度,
设BE=x,则CE=x,
∵AB=40,
∴AE=40+x,
∵这一时刻,身高1.60米的同学小明测得自己的影子(在平地上)为0.8米,
∴
AE
BE
=
1.6
0.8
=2
,
即:
40+x
x
=2
,得x=40.
∴这个塔在斜坡上的影子长为BC=
40
2
米.
解:过点C作CE⊥AE于E(如图).
∵斜坡的坡度为i=1:1,
∴∠BCE=45度,
设BE=x,则CE=x,
∵AB=40,
∴AE=40+x,
∵这一时刻,身高1.60米的同学小明测得自己的影子(在平地上)为0.8米,
∴
AE
BE
=
1.6
0.8
=2
,
即:
40+x
x
=2
,得x=40.
∴这个塔在斜坡上的影子长为BC=
40
2
米.
考点梳理
考点
分析
点评
专题
解直角三角形的应用-坡度坡角问题.
应转化成两个直角三角形求解.利用AE与BE的比为1:1;求得BE,进而求得CE长.然后根据小明的身高:影子长=2:1,得到BC长.
这两个直角三角形有公共的直角边,先求出公共边的解决此类题目的基本出发点.
应用题.
找相似题
(2013·宁夏)如图是某水库大坝横断面示意图.其中AB、CD分别表示水库上下底面的水平线,∠ABC=120°,BC的长是50m,则水库大坝的高度h是( )
(2011·宁波)如图,某游乐场一山顶滑梯的高为h,滑梯的坡角为α,那么滑梯长l为( )
(2011·东营)河堤横断面如图所示,堤高BC=5米,迎水坡AB的坡比是1:
3
(坡比是坡面的铅直高度BC与水平宽度AC之比),则AC的长是( )
(2010·枣庄)如图是某商场一楼与二楼之间的手扶电梯示意图.其中AB,CD分别表示一楼,二楼地面的水平线,∠ABC=150°,BC的长是8m,则乘电梯从点B到点C上升的高度h是( )
(2010·温州)如图,已知一商场自动扶梯的长l为10米,该自动扶梯到达的高度h为6米,自动扶梯与地面所成的角为θ,则tanθ的值等于( )